Specialising Guava’s Cache to Reduce Energy Consumption

  • Nathan BurlesEmail author
  • Edward Bowles
  • Bobby R. Bruce
  • Komsan Srivisut
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9275)


In this article we use a Genetic Algorithm to perform parameter tuning on Google Guava’s Cache library, specialising it to OpenTripPlanner. A new tool, Opacitor, is used to deterministically measure the energy consumed, and we find that the energy consumption of OpenTripPlanner may be significantly reduced by tuning the default parameters of Guava’s Cache library. Finally we use Jalen, which uses time and CPU utilisation as a proxy to calculate energy consumption, to corroborate these results.


Parameter tuning Library specialisation Energy profiling Reduced power consumption 



Work funded by UK EPSRC grant EP/J017515/1. Data available at


  1. 1.
    Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing randomized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250 (2012)CrossRefGoogle Scholar
  2. 2.
    Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic improvement. In: GECCO (2015, to aappear)Google Scholar
  3. 3.
    Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment problem. Comput. Oper. Res. 24(1), 17–23 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools: principles and case-study. Int. J. Artif. Intell. Tools 15(02), 173–194 (2006)CrossRefGoogle Scholar
  5. 5.
    Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy consumption using program analysis. In: 35th International Conference on Software Engineering, pp. 92–101. IEEE (2013)Google Scholar
  6. 6.
    Heggestuen, J.: Business insider: one in every 5 people in the world own a smartphone, one in every 17 own a tablet (2013). Accessed 3 May, 2015
  7. 7.
    Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.: Dynamic knobs for responsive power-aware computing. ACM SIGPLAN Not. 46, 199–212 (2011). ACMCrossRefGoogle Scholar
  8. 8.
    Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press, Cambridge (1992) Google Scholar
  9. 9.
    Katagiri, T., Kise, K., Honda, H., Yuba, T.: FIBER: a generalized framework for auto-tuning software. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds.) ISHPC 2003. LNCS, vol. 2858, pp. 146–159. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  10. 10.
    Koomey, J.: Growth in data center electricity use from 2005 to 2010, August 2011Google Scholar
  11. 11.
    Luke, S., Panait, L., Balan, G., et al.: A java-based evolutionary computation research system, March 2004.
  12. 12.
    Manotas, I., Pollock, L., Clause, J.: SEEDS: a software engineer’s energy-optimization decision support framework. In: Proceedings of the 36th International Conference on Software Engineering, pp. 503–514. ACM Press, New York (2014)Google Scholar
  13. 13.
    Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental template pattern for the systematic comparison of metaheuristics. In: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, pp. 1427–1430. ACM (2014)Google Scholar
  14. 14.
    Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: Runtime monitoring of software energy hotspots. In: Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pp. 160–169. IEEE (2012)Google Scholar
  15. 15.
    Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler software optimization for reducing energy. In: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 639–652. ACM (2014)Google Scholar
  16. 16.
    Swan, J., Burles, N.: Templar-a framework for template-method hyper-heuristics. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015, LNCS, vol. 9025, pp. 205–216. Springer, Heidelberg (2015)Google Scholar
  17. 17.
    Ţăpuş, C., Chung, I.H., Hollingsworth, J.K., et al.: Active harmony: towards automated performance tuning. In: Proceedings of the 2002 ACM/IEEE Conference on Supercomputing, pp. 1–11. IEEE Computer Society Press (2002)Google Scholar
  18. 18.
    Vuduc, R.W., Demmel, J.W., Bilmes, J.: Statistical models for automatic performance tuning. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 117–126. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  19. 19.
    Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–27. IEEE Computer Society (1998)Google Scholar
  20. 20.
    White, D.R.: Software review: the ECJ toolkit. Genet. Program Evolvable Mach. 13(1), 65–67 (2012)CrossRefGoogle Scholar
  21. 21.
    Wu, F., Weimser, W.: Deep parameter optimisation. In: GECCO (2015, to appear)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nathan Burles
    • 1
    Email author
  • Edward Bowles
    • 1
  • Bobby R. Bruce
    • 2
  • Komsan Srivisut
    • 1
  1. 1.University of YorkYorkUK
  2. 2.CREST CentreUniversity College LondonLondonUK

Personalised recommendations