Transformed Search Based Software Engineering: A New Paradigm of SBSE

  • He JiangEmail author
  • Zhilei Ren
  • Xiaochen Li
  • Xiaochen Lai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9275)


Recent years have witnessed the sharp growth of research interests in Search Based Software Engineering (SBSE) from the society of Software Engineering (SE). In SBSE, a SE task is generally transferred into a combinatorial optimization problem and search algorithms are employed to achieve solutions within its search space. Since the terrain of the search space is rugged with numerous local optima, it remains a great challenge for search algorithms to achieve high-quality solutions in SBSE. In this paper, we propose a new paradigm of SBSE, namely Transformed Search Based Software Engineering (TSBSE). Given a new SE task, TSBSE first transforms its search space into either a reduced one or a series of gradually smoothed spaces, then employ search algorithms to effectively seek high-quality solutions. More specifically, we investigate two techniques for TSBSE, namely search space reduction and search space smoothing. We demonstrate the effectiveness of these new techniques over a typical SE task, namely the Next Release Problem (NRP). The work of this paper provides a new way for tackling SE tasks in SBSE.


Search based software engineering Search space transformation Search space reduction Search space smoothing Next release problem 



This work is supported in part by the National Natural Science Foundation of China under Grants 61175062, 61370144, and 61403057, and in part by China Postdoctoral Science Foundation under Grant 2014M551083.


  1. 1.
    Harman, M., Jones, B.: Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839 (2001)CrossRefGoogle Scholar
  2. 2.
    Harman, M., Mansouri, A., Zhang, Y.: Search based software engineering: trends, techniques and applications. ACM Comput. Surv. 45(1), 11–75 (2012). Article 11CrossRefGoogle Scholar
  3. 3.
    Xuan, J., Jiang, H., Ren, Z., Luo, Z.: Solving the large scale next release problem with a backbone-based multilevel algorithm. IEEE TSE 38(5), 1195–1212 (2012)zbMATHGoogle Scholar
  4. 4.
    Ren, Z., Jiang, H., Xuan, J., Luo, Z.: An accelerated limit crossing based multilevel algorithm for the p-Median problem. IEEE TSMCB 42(2), 1187–1202 (2012)Google Scholar
  5. 5.
    Jun, G., Huang, X.: Efficient local search with search space smoothing: A case study of the traveling salesman problem (TSP). IEEE Trans. Syst. Man Cybern. 24(5), 728–735 (1994)CrossRefGoogle Scholar
  6. 6.
    Bagnall, A.J., Rayward-Smith, V.J., Whittley, I.M.: The next release problem. Inf. Softw. Technol. 43(14), 883–890 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Baker, P., Harman, M., Steinhofel, K., Skaliotis, A.: Search based approaches to component selection and prioritization for the next release problem. In Software Maintenance, pp. 176–185 (2006)Google Scholar
  8. 8.
    Finkelstein, A., Harman, M., Mansouri, S.A., Ren, J., Zhang, Y.: A search based approach to fairness analysis in requirement assignments to aid negotiation, mediation and decision making. Requirements Eng. 14(4), 231–245 (2009)CrossRefGoogle Scholar
  9. 9.
    Greer, D., Ruhe, G.: Software release planning: an evolutionary and iterative approach. Inf. Softw. Technol. 46(4), 243–253 (2004)CrossRefGoogle Scholar
  10. 10.
    Jiang, H., Zhang, J., Xuan, J., Ren, Z., Hu, Y.: A hybrid ACO algorithm for the next release problem. In: SEDM, pp. 166–171 (2010)Google Scholar
  11. 11.
    Ngo-The, A., Ruhe, G.: Optimized resource allocation for software release planning. IEEE Trans. Software Eng. 35(1), 109–123 (2009)CrossRefGoogle Scholar
  12. 12.
    Paixão, M.H.E., de Souza, J.T.: A recoverable robust approach for the next release problem. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 172–187. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Paixão, M., Souza, J.: A scenario-based robust model for the next release problem. In: GECCO, pp. 1469–1476 (2013)Google Scholar
  14. 14.
    Paixão, M., Souza, J.: A robust optimization approach to the next release problem in the presence of uncertainties. J. Syst. Softw. 103, 281–295 (2014)CrossRefGoogle Scholar
  15. 15.
    Fuchshuber, R., de Oliveira Barros, M.: Improving heuristics for the next release problem through landscape visualization. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 222–227. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Araújo, A.A., Paixão, M.: Machine learning for user modeling in an interactive genetic algorithm for the next release problem. In: Le Goues, C., Yoo, S. (eds.) SSBSE 2014. LNCS, vol. 8636, pp. 228–233. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Harman, M., Krinke, J., Medina-Bulo, I., Palomo-Lozano, F., Ren, J., Yoo, S.: Exact scalable sensitivity analysis for the next release problem. TOSEM 23(2), 19 (2014)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Harman, M., Mansouri, S.A.: The multi-objective next release problem. In: GECCO, pp. 1129–1137. ACM (2007)Google Scholar
  19. 19.
    Finkelstein, A., Harman, M., Mansouri, S.A., Ren, J., Zhang, Y.: A search based approach to fairness analysis in requirement assignments to aid negotiation, mediation and decision making. Requirements Eng. 14(4), 231–245 (2009)CrossRefGoogle Scholar
  20. 20.
    Harman, M., Krinke, J., Ren, J., Yoo, S.: Search based data sensitivity analysis applied to requirement engineering. In: GECCO, pp. 1681–1688. ACM (2009)Google Scholar
  21. 21.
    Gueorguiev, S., Harman, M., Antoniol, G.: Software project planning for robustness and completion time in the presence of uncertainty using multi objective search based software engineering. In: GECCO, pp. 1673–1680. ACM (2009)Google Scholar
  22. 22.
    Li, L., Harman, M., Letier, E., Zhang, Y.: Robust next release problem: handling uncertainty during optimization. In: GECCO, pp. 1247–1254 (2014)Google Scholar
  23. 23.
    Saliu, M.O., Ruhe, G.: Bi-objective release planning for evolving software systems. In: FSE, pp. 105–114 (2007)Google Scholar
  24. 24.
    Zhang, Y., Alba, E., Durillo, J.J., Eldh, S., Harman, M.: Today/future importance analysis. In: GECCO, pp. 1357–1364. ACM (2007)Google Scholar
  25. 25.
    Veerapen, N., Ochoa, G., Harman, M., Burke, E.K.: An integer linear programming approach to the single and bi-objective next release problem. Inf. Softw. Technol. 65, 1–13 (2015)CrossRefGoogle Scholar
  26. 26.
    Zhang, Y., Harman, M., Ochoa, G., Ruhe, G., Brinkkemper, S.: An empirical Study of meta-and hyper-heuristic search for multi-objective release planning. RN 14, 07 (2014)Google Scholar
  27. 27.
    Pitangueira, A.M., Maciel, R.S.P., Barros, M.: Software requirements selection and prioritization using SBSE approaches: A systematic review and mapping of the literature. J. Syst. Softw. 103, 267–280 (2014)CrossRefGoogle Scholar
  28. 28.
    Coy, S.P., Golden, B.L., Runger, G.C., Wasil, E.A.: See the forest before the trees: fine-tuned learning and its application to the traveling salesman problem. IEEE SMCA. 28, 454–464 (2014)Google Scholar
  29. 29.
    Fraser, G., Arcuri, A., McMinn, P.: A Memetic Algorithm for whole test suite generation. J. Syst. Softw. 103(2), 311–327 (2014)Google Scholar
  30. 30.
    Moscato, P., Cotta, C., Mendes, A.: Memetic algorithms. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering, pp. 53–85. Springer, Berlin, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Lopez-Ibanez, M., Dubois-Lacoste, J., Stutzle, T., et al.: The irace package, iterated race for automatic algorithm configuration. IRIDIA, Universite Libre de Bruxelles, Belgium, Technical Report TR/IRIDIA/2011-004 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • He Jiang
    • 1
    Email author
  • Zhilei Ren
    • 1
  • Xiaochen Li
    • 1
  • Xiaochen Lai
    • 1
  1. 1.School of SoftwareDalian University of TechnologyDalianChina

Personalised recommendations