Constructive Relationships Between Algebraic Thickness and Normality

  • Joan Boyar
  • Magnus Gausdal FindEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9210)


We study the relationship between two measures of Boolean functions; algebraic thickness and normality. For a function f, the algebraic thickness is a variant of the sparsity, the number of nonzero coefficients in the unique \(\mathbb {F}_2\) polynomial representing f, and the normality is the largest dimension of an affine subspace on which f is constant. We show that for \(0 < \epsilon <2\), any function with algebraic thickness \(n^{3-\epsilon }\) is constant on some affine subspace of dimension \(\varOmega \left( n^{\frac{\epsilon }{2}}\right) \). Furthermore, we give an algorithm for finding such a subspace. We show that this is at most a factor of \(\varTheta (\sqrt{n})\) from the best guaranteed, and when restricted to the technique used, is at most a factor of \(\varTheta (\sqrt{\log n})\) from the best guaranteed. We also show that a concrete function, majority, has algebraic thickness \(\varOmega \left( 2^{n^{1/6}}\right) \).


Random Boolean Function High Normality Higher Order Differential Attack Random Degree Affine Bijection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G., Serna, M.J. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 61–72. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Boyar, J., Find, M.G.: Constructive relationships between algebraic thickness and normality. CoRR abs/1410.1318 (2014)Google Scholar
  3. 3.
    Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of boolean functions over the basis (\(\wedge,\oplus \), 1). Theor. Comput. Sci. 235(1), 43–57 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Carlet, C.: On cryptographic complexity of boolean functions. In: Mullen, G., Stichtenoth, H., Tapia-Recillas, H. (eds.) Finite Fields with Applications to Coding Theory, Cryptography and Related Areas, pp. 53–69. Springer, Berlin (2002)CrossRefGoogle Scholar
  5. 5.
    Carlet, C.: On the algebraic thickness and non-normality of boolean functions. In: Information Theory Workshop, pp. 147–150. IEEE (2003)Google Scholar
  6. 6.
    Carlet, C.: On the degree, nonlinearity, algebraic thickness, and nonnormality of boolean functions, with developments on symmetric functions. IEEE Trans. Inf. Theor. 50(9), 2178–2185 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Carlet, C.: The complexity of boolean functions from cryptographic viewpoint. In: Krause, M., Pudlàk, P., Reischuk, R., van Melkebeek, D. (eds.) Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, vol. 06111. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2006)Google Scholar
  8. 8.
    Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, pp. 257–397. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  9. 9.
    Charpin, P.: Normal boolean functions. J. Complexity 20(2–3), 245–265 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Cohen, G., Tal, A.: Two structural results for low degree polynomials and applications. CoRR abs/1404.0654 (2014)Google Scholar
  11. 11.
    Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory. Teubner’s Sammlung von Lehrbuchern auf dem Gebiete der matematischen Wissenschaften VL, x+312 (1901)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974)CrossRefzbMATHGoogle Scholar
  14. 14.
    Jukna, S.: Boolean Function Complexity - Advances and Frontiers. Algorithms and combinatorics, vol. 27. Springer, Heidelberg (2012)Google Scholar
  15. 15.
    Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) Fast Software Encryption. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut, R.E., Costello Jr, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications and Cryptography. The Springer International Series in Engineering and Computer Science, vol. 276, pp. 227–233. Springer, US (1994)CrossRefGoogle Scholar
  17. 17.
    Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  18. 18.
    Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  19. 19.
    Mihaljevic, M.J., Gangopadhyay, S., Paul, G., Imai, H.: Generic cryptographic weakness of k-normal boolean functions in certain stream ciphers and cryptanalysis of grain-128. Periodica Mathematica Hungarica 65(2), 205–227 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Razborov, A.A.: Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Math. Notes 41(4), 333–338 (1987)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Rothaus, O.S.: On “bent" functions. J. Comb. Theory Ser. A 20(3), 300–305 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Shaltiel, R.: Dispersers for affine sources with sub-polynomial entropy. In: Ostrovsky, R. (ed.) FOCS. pp. 247–256. IEEE (2011)Google Scholar
  23. 23.
    Subbotovskaya, B.A.: Realizations of linear functions by formulas using +,*,-. Math. Dokl. 2(3), 110–112 (1961)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the US)  2015

Authors and Affiliations

  1. 1.Department of Mathematics of Computer ScienceUniversity of Southern DenmarkOdenseDenmark
  2. 2.Information Technology LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations