Advertisement

Privacy in Elections: k-Anonymizing Preference Orders

  • Nimrod TalmonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9210)

Abstract

We study the (parameterized) complexity of a combinatorial problem, motivated by the desire to publish elections-related data, while preserving the privacy of the voters (humans or agents). In this problem, introduced and defined here, we are given an election, a voting rule, and a distance function over elections. The task is to find an election which is not too far away from the original election (with respect to the given distance function) while preserving the election winner (with respect to the given voting rule), and such that the resulting election is k-anonymized; an election is said to be k-anonymous if for each voter in it there are at least \(k - 1\) other voters with the same preference order. We consider the problem of k-anonymizing elections for the Plurality rule and for the Condorcet rule, for the Discrete distance and for the Swap distance. We show that the parameterized complexity landscape of our problem is diverse, with cases ranging from being polynomial-time solvable to \({\mathsf {Para}\text {-}\mathsf {NP}}\)-hard.

References

  1. 1.
    Ashur, T., Dunkelman, O.: Poster: on the anonymity of Israel’s general elections. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 1399–1402. ACM (2013)Google Scholar
  2. 2.
    Biedl, T., Brandenburg, F.J., Deng, X.: On the complexity of crossings in permutations. Discrete Math. 309(7), 1813–1823 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Brandt, F., Conitzer, V., Endriss, U.: Computational social choice. In: Weiss, G. (ed.) Multiagent Systems, 2nd edn., pp. 213–283. MIT Press, Cambridge (2013)Google Scholar
  4. 4.
    Bredereck, R., Nichterlein, A., Niedermeier, R.: Pattern-guided k-anonymity. Algorithms 6(4), 678–701 (2013)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bredereck, R., Froese, V., Hartung, S., Nichterlein, A., Niedermeier, R., Talmon, N.: The complexity of degree anonymization by vertex addition. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp. 44–55. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Bredereck, R., Nichterlein, A., Niedermeier, R., Philip, G.: The effect of homogeneity on the computational complexity of combinatorial data anonymization. Data Min. Knowl. Disc. 28(1), 65–91 (2014b)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Chaum, D.L.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 24(2), 84–90 (1981)CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Chong, S., Kash, I.A., Moran, T., Vadhan, S.: Truthful mechanisms for agents that value privacy. In: Proceedings of the Fourteenth ACM Conference on Electronic Commerce, pp. 215–232. ACM (2013)Google Scholar
  9. 9.
    Clifton, C., Tassa, T.: On syntactic anonymity and differential privacy. In: 2013 IEEE 29th International Conference on Data Engineering Workshops (ICDEW), pp. 88–93. IEEE (2013)Google Scholar
  10. 10.
    Cuvelier, É., Pereira, O., Peters, T.: Election verifiability or ballot privacy: do we need to choose? In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 481–498. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, Heidelberg (2013) CrossRefzbMATHGoogle Scholar
  12. 12.
    Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Theoret. Comput. Sci. 9(3–4), 211–407 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622. ACM (2001)Google Scholar
  14. 14.
    Elkind, E., Faliszewski, P., Slinko, A.: On the role of distances in defining voting rules. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 375–382. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  15. 15.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006) Google Scholar
  16. 16.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38, 293–306 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complexity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 594–606. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 93–106. ACM (2008)Google Scholar
  20. 20.
    Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: \(l\)-diversity: privacy beyond \(k\)-anonymity. ACM Trans. Knowl. Disc. Data (TKDD) 1(1), 3 (2007)CrossRefGoogle Scholar
  21. 21.
    Mattei, N., Walsh, T.: PrefLib: a library for preferences http://www.preflib.org. In: Perny, P., Pirlot, M., Tsoukiàs, A. (eds.) ADT 2013. LNCS, vol. 8176, pp. 259–270. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Meyerson, A., Williams, R.: On the complexity of optimal \(k\)-anonymity. In: Proceedings of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 223–228. ACM (2004)Google Scholar
  23. 23.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006) CrossRefzbMATHGoogle Scholar
  24. 24.
    Nurmi, H., Salomaa, A., Santean, L.: Secret ballot elections in computer networks. Comput. Secur. 10(6), 553–560 (1991)CrossRefGoogle Scholar
  25. 25.
    Sweeney, L.: \(k\)-anonymity: a model for protecting privacy. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations