Advertisement

A Note on Decidable Separability by Piecewise Testable Languages

  • Wojciech Czerwiński
  • Wim Martens
  • Lorijn van Rooijen
  • Marc Zeitoun
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9210)

Abstract

The separability problem for word languages of a class \(\mathcal {C}\) by languages of a class \(\mathcal {S}\) asks, for two given languages I and E from \(\mathcal {C}\), whether there exists a language S from \(\mathcal {S}\) that includes I and excludes E, that is, \(I \subseteq S\) and \(S\cap E = \emptyset \). It is known that separability for context-free languages by any class containing all definite languages (such as regular languages) is undecidable. We show that separability of context-free languages by piecewise testable languages is decidable. This contrasts with the fact that testing if a context-free language is piecewise testable is undecidable. We generalize this decidability result by showing that, for every full trio (a class of languages that is closed under rather weak operations) which has decidable diagonal problem, separability with respect to piecewise testable languages is decidable. Examples of such classes are the languages defined by labeled vector addition systems and the languages accepted by higher order pushdown automata of order two. The proof goes through a result which is of independent interest and shows that, for any kind of languages I and E, separability can be decided by testing the existence of common patterns in I and E.

Keywords

Regular Language Factorization Pattern Boolean Combination Finite Alphabet Definite Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Tomáš Masopust for pointing us to [16] and Thomas Place for pointing out to us that determining if a given context-free language is piecewise testable is undecidable. We are also grateful to the anonymous reviewers for many helpful remarks that simplified proofs. We are much indebted to Georg Zetzsche for many useful remarks and most of all for sending us a simple proof that showed that, for full trios, separability by PTL implies decidability of the diagonal problem, thereby turning Theorem 2 into an equivalence. We plan to incorporate his proof in the full version of this paper.

References

  1. 1.
    Aho, A.V.: Indexed grammars – an extension of context-free grammars. J. ACM 15(4), 647–671 (1968)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Almeida, J.: Finite Semigroups and Universal Algebra, Volume 3 of Series in Algebra. World Scientific Publishing Company, Singapore (1994) Google Scholar
  3. 3.
    Antonopoulos, T., Hovland, D., Martens, W., Neven, F.: Deciding twig-definability of node selecting tree automata. In: ICDT, pp. 61–73 (2012)Google Scholar
  4. 4.
    Arfi, M.: Polynomial operations on rational languages. In: STACS, pp. 198–206 (1987)Google Scholar
  5. 5.
    Benedikt, M., Segoufin, L.: Regular tree languages definable in FO and in FO\(_{\rm mod}\). ACM Trans. Comput. Logi 11(1), 4:1–4:32 (2009)MathSciNetGoogle Scholar
  6. 6.
    Berstel, J.: Transductions and context-free languages. Teubner, Stuttgart (1979)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bojańczyk, M., Idziaszek, T.: Algebra for infinite forests with an application to the temporal logic EF. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 131–145. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Bojanczyk, M., Segoufin, L., Straubing, H.: Piecewise testable tree languages. LMCS 8(3), 1–20 (2012)MathSciNetGoogle Scholar
  9. 9.
    Bonnet, R., Finkel, A., Leroux, J., Zeitoun, M.: Model checking vector addition systems with one zero-test. LMCS 8(2), 1–25 (2012)MathSciNetGoogle Scholar
  10. 10.
    Czerwiński, W., Martens, W., Masopust, T.: Efficient separability of regular languages by subsequences and suffixes. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 150–161. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  11. 11.
    Esparza, J., Ganty, P., Kiefer, S., Luttenberger, M.: Parikh’s theorem: a simple and direct automaton construction. Inf. Process. Lett. 111(12), 614–619 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Ginsburg, S., Greibach, S.A.: Abstract families of languages. In: SWAT / FOCS, pp. 128–139 (1967)Google Scholar
  13. 13.
    Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific J. Math. 16, 285–296 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Greibach, S.: A note on undecidable properties of formal languages. Math. Sys. Theor. 2(1), 1–6 (1968)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Hofman, P., Martens, W.: Separability by short subsequences and subwords. In: ICDT, pp. 230–246 (2015)Google Scholar
  16. 16.
    Hunt III, H.B.: On the decidability of grammar problems. J. ACM 29(2), 429–447 (1982)CrossRefzbMATHGoogle Scholar
  17. 17.
    Jantzen, M.: On the hierarchy of Petri net languages. RAIRO Informatique Théorique 13(1), 19–30 (1979)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary version). In: STOC, pp. 267–281 (1982)Google Scholar
  19. 19.
    Leroux, J.: The general vector addition system reachability problem by Presburger inductive invariants. LMCS 6(3), 1–25 (2010)MathSciNetGoogle Scholar
  20. 20.
    Maslov, A.N.: Multilevel stack automata. Probl. Inf. Transm. 12(1), 38–42 (1976)Google Scholar
  21. 21.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    McNaughton, R.: Algebraic decision procedures for local testability. Math. Syst. Theor. 8(1), 60–76 (1974)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Pin, J.-E., Weil, P.: Polynomial closure and unambiguous product. Theory Comput. Syst. 30(4), 383–422 (1997)CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by locally testable and locally threshold testable languages. In: FSTTCS, pp. 363–375 (2013)Google Scholar
  26. 26.
    Place, T., van Rooijen, L., Zeitoun, M.: Separating regular languages by piecewise testable and unambiguous languages. In: Chatterjee, K., Sgall, J. (eds.) MFCS 2013. LNCS, vol. 8087, pp. 729–740. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  27. 27.
    Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierarchy on words. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 342–353. Springer, Heidelberg (2014) Google Scholar
  28. 28.
    Place, T., Zeitoun, M.: Separating regular languages with first-order logic. In: CSL-LICS, pp. 75:1–75:10. ACM (2014)Google Scholar
  29. 29.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8(2), 190–194 (1965)CrossRefzbMATHGoogle Scholar
  30. 30.
    Simon, I.: Piecewise testable events. In: Simon, I. (ed.) Automata Theory and Formal Languages. LNCS, pp. 214–222. springer, Heidelberg (1975) Google Scholar
  31. 31.
    Simon, I.: Factorization forests of finite height. Theor. Comput. Sci. 72(1), 65–94 (1990)CrossRefzbMATHGoogle Scholar
  32. 32.
    Straubing, H.: Semigroups and languages of dot-depth two. Theor. Comput. Sci. 58, 361–378 (1988)CrossRefMathSciNetzbMATHGoogle Scholar
  33. 33.
    Szymanski, T., Williams, J.: Noncanonical extensions of bottom-up parsing techniques. SIAM J. Comput. 5(2), 231–250 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  34. 34.
    Zalcstein, Y.: Locally testable languages. J. Comput. Syst. Sci. 6(2), 151–167 (1972)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Zetzsche, G.: Personal communicationGoogle Scholar
  36. 36.
    Zetzsche, G.: An approach to computing downward closures. In: ICALP (2015). To appear, Accessed on http://arxiv.org/abs/1503.01068

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Wojciech Czerwiński
    • 1
  • Wim Martens
    • 2
  • Lorijn van Rooijen
    • 3
  • Marc Zeitoun
    • 3
  1. 1.University of WarsawWarsawPoland
  2. 2.University of BayreuthBayreuthGermany
  3. 3.Bordeaux UniversityTalenceFrance

Personalised recommendations