Advertisement

Refinement to Imperative/HOL

  • Peter Lammich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9236)

Abstract

Many algorithms can be implemented most efficiently with imperative data structures that support destructive update. In this paper we present an approach to automatically generate verified imperative implementations from abstract specifications in Isabelle/HOL. It is based on the Isabelle Refinement Framework, for which a lot of abstract algorithms are already formalized.

Based on Imperative/HOL, which allows to generate verified imperative code, we develop a separation logic framework with automation to make it conveniently usable. On top of this, we develop an imperative collection framework, which provides standard implementations for sets and maps like hash tables and array lists. Finally, we define a refinement calculus to refine abstract (functional) algorithms to imperative ones.

Moreover, we have implemented a tool to automate the refinement process, replacing abstract data types by efficient imperative implementations from our collection framework. As a case study, we apply our tool to automatically generate verified imperative implementations of nested depth-first search and Dijkstra’s shortest paths algorithm, which are considerably faster than the corresponding functional implementations. The nested DFS implementation is almost as fast as a C++ implementation of the same algorithm.

Keywords

Priority Queue Correctness Proof Separation Logic Abstract Data Type Imperative Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank Rene Meis for formalizing the basics of separation logic for Imperative/HOL. Moreover we thank Thomas Tuerk for interesting discussions about automation of separation logic.

References

  1. 1.
    Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation logic. In: POPL, pp. 259–270. ACM (2005)Google Scholar
  2. 2.
    Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative functional programming with isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  3. 3.
    Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means of bi-abduction. In: POPL 2009, pp. 289–300 (2009)Google Scholar
  4. 4.
    Calcagno, C., O’Hearn, P., Yang, H.: Local action and abstract separation logic. LICS 2007, 366–378 (2007)Google Scholar
  5. 5.
    Charguéraud, A.: Characteristic formulae for the verification of imperative programs. In: ICFP, pp. 418–430. ACM (2011)Google Scholar
  6. 6.
    Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.: A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Hinze, R., Paterson, R.: Finger trees: A simple general-purpose data structure. J. Funct. Program. 16(2), 197–217 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Holzmann, G., Peled, D., Yannakakis, M.: On nested depth first search. In: SPIN. Discrete Mathematics and Theoretical Computer Science, vol. 32, pp. 23–32. American Mathematical Society (1996)Google Scholar
  9. 9.
    Klein, G., Kolanski, R., Boyton, A.: Mechanised separation algebra. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 332–337. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  10. 10.
    Krauss, A.: Recursive definitions of monadic functions. In: Proceedings of PAR, vol. 43, pp. 1–13 (2010)Google Scholar
  11. 11.
    Lammich, P.: Collections framework. In: Archive of Formal Proofs, Dec 2009. http://afp.sf.net/entries/Collections.shtml. Formal proof development
  12. 12.
    Lammich, P.: Refinement for monadic programs. In: Archive of Formal Proofs (2012). http://afp.sf.net/entries/Refine_Monadic.shtml. Formal proof development
  13. 13.
    Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Lammich, P.: Verified efficient implementation of gabow’s strongly connected component algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 325–340. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Lammich, P., Meis, R.: A separation logic framework for imperative hol. In: Archive of Formal Proofs, Nov 2012. http://afp.sf.net/entries/Separation_Logic_Imperative_HOL.shtml. Formal proof development
  17. 17.
    Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 166–182. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  18. 18.
    Marti, N., Affeldt, R.: A certified verifier for a fragment of separation logic. In: PPL-Workshop (2007)Google Scholar
  19. 19.
    Meis, R.: Integration von Separation Logic in das Imperative HOL-Framework. Master Thesis, WWU Münster (2011)Google Scholar
  20. 20.
    MLton Standard ML compiler. http://mlton.org/
  21. 21.
    Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: Reasoning with the awkward squad. In: ICFP (2008)Google Scholar
  22. 22.
    Neumann, R.: A framework for verified depth-first algorithms. In: Workshop on Automated Theory Exploration (ATX 2012), pp. 36–45 (2012)Google Scholar
  23. 23.
    Nordhoff, B., Lammich, P.: Formalization of Dijkstra’s algorithm. In: Archive of Formal Proofs, Jan 2012. http://afp.sf.net/entries/Dijkstra_Shortest_Path.shtml. Formal proof development
  24. 24.
    Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D., Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  25. 25.
    Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proceedings of Logic in Computer Science (LICS), pp. 55–74. IEEE (2002)Google Scholar
  26. 26.
    Schwoon, S., Esparza, J.: A note on on-the-fly verification algorithms. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 174–190. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  27. 27.
    Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley, Boston (2011) Google Scholar
  28. 28.
    Tuerk, T.: A separation logic framework for HOL. Technical report UCAM-CL-TR-799, University of Cambridge, Computer Laboratory, June 2011Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Technische Universität MünchenMunichGermany

Personalised recommendations