Advertisement

Analog-Digital Interfaces—Review and Current Trends

  • Matthias KellerEmail author
  • Boris Murmann
  • Yiannos Manoli
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

By updating the figure-of-merit plots presented in CHIPS 2020 using new survey data collected over the years 2011–2015, this chapter discusses asymptotes and extracts recent improvement rates in the area of low-power, high-performance A/D conversion. Moreover, five years after the writing of CHIPS 2020, the developments in current architectures will be re-iterated, and the emerging concept of analog-to-information conversion will be discussed.

Keywords

Loop Filter Noise Shaping Clock Jitter Pipeline ADCs Flash ADCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Keller, M., Murmann, B., Manoli, Y.: Analog-digital interfaces. In: Hoefflinger, B. (ed.) CHIPS 2020—A Guide to the Future of Nanoelectronics, pp. 95–130. Springer, Berlin (2012)Google Scholar
  2. 2.
    Murmann, B.: ADC performance survey 1997–2015. Available http://web.stanford.edu/~murmann/adcsurvey.html
  3. 3.
    Walden, R.H.: Analog-to-digital converter survey and analysis. IEEE J. Sel. Areas Commun. 17(4), 539–550 (1999)CrossRefGoogle Scholar
  4. 4.
    Schreier, R., Temes, G.C.: Understanding Delta-Sigma Data Converters. Wiley, New York (2005)Google Scholar
  5. 5.
    Ali, A.M.A., et al.: A 16-bit 250-MS/s IF sampling pipelined ADC with background calibration. IEEE J. Solid-State Circuits 45(12), 2602–2612 (2010)CrossRefGoogle Scholar
  6. 6.
    Ali, A.M.A.: A 14-bit 125 MS/s IF/RF sampling pipelined ADC with 100 dB SFDR and 50 fs Jitter. IEEE J. Solid-State Circuits 41(8), 1846–1855 (2006)CrossRefGoogle Scholar
  7. 7.
    Ali, A.M.A., et al.: A 14 Bit 1 GS/s RF sampling pipelined ADC with background calibration. IEEE J. Solid-State Circuits 49(12), 2857–2867 (2014)CrossRefGoogle Scholar
  8. 8.
    Greshishchev, Y.M., et al.: A 40GS/s 6b ADC in 65 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest of Technical Papers, pp. 390–391 (2010)Google Scholar
  9. 9.
    Elliott, M., Murmann, B.: High-performance pipelined ADCs for wireless infrastructure systems. In: Manganaro, G., Leenaerts, D.M.W. (eds.) Advances in Analog and RF IC Design for Wireless Communication Systems. Elsevier, Amsterdam (2013)Google Scholar
  10. 10.
    Murmann, B.: Energy limits in A/D converters. In: 2013 IEEE Faible Tension Faible Consommation, pp. 1–4 (2013)Google Scholar
  11. 11.
    Bannon, A., et al.: An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range. In: IEEE Symposium of VLSI Circuits—Digest Technical Papers, pp. 1–2 (2014)Google Scholar
  12. 12.
    Lim, Y., Flynn, M.P.: A 1 mW 71.5 dB SNDR 50 MS/s 13 b fully differential ring amplifier based SAR-assisted pipeline ADC in 65 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 458–459 (2015)Google Scholar
  13. 13.
    Verbruggen, B., et al.: A 70 dB SNDR 200MS/s 2.3 mW dynamic pipelined SAR ADC in 28 nm digital CMOS. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 1–2 (2014)Google Scholar
  14. 14.
    Kull, L. et al.: A 90 GS/s 8 b 667 mW 64x interleaved SAR ADC in 32 nm Digital SOI CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 378–379 (2014)Google Scholar
  15. 15.
    Vittoz, E.A.: Future of analog in the VLSI environment. In: Proceedings of IEEE International Symposium on Circuits System, pp. 1372–1375 (1990)Google Scholar
  16. 16.
    Hosticka, B.J.: Performance comparison of analog and digital circuits. Proc. IEEE 73(1), 25–29 (1985)CrossRefGoogle Scholar
  17. 17.
    Bolatkale, M., et al.: A 4 GHz CT ΔΣ ADC with 70 dB DR and −74 dBFS THD in 125 MHz BW. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 470–472 (2011)Google Scholar
  18. 18.
    Tai, H.-Y., et al.: A 0.85 fJ/conversion-step 10 b 200 kS/s subranging SAR ADC in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 196–197 (2014)Google Scholar
  19. 19.
    Doris, K., et al.: A 480 mW 2.6 GS/s 10 b 65 nm CMOS time-interleaved ADC with 48.5 dB SNDR up to Nyquist. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 180–182 (2011)Google Scholar
  20. 20.
    van der Goes, F., et al.: 11.4 A 1.5 mW 68 dB SNDR 80 MS/s 2× interleaved SAR-assisted pipelined ADC in 28 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 200–201 (2014)Google Scholar
  21. 21.
    Lee, C.C., Flynn, M.P.: A SAR-assisted two-stage pipeline ADC. IEEE J. Solid-State Circuits 46(4), 859–869 (2011)CrossRefGoogle Scholar
  22. 22.
    Kapusta, R., Decker, S., Ibaragi, E.: A 14 b 80 MS/s SAR ADC with 73.6 dB SNDR in 65 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 472–473 (2013)Google Scholar
  23. 23.
    Harpe, P., Cantatore, E., van Roermund, A.: A 10 b/12 b 40 kS/s SAR ADC with data-driven noise reduction achieving up to 10.1 b ENOB at 2.2 fJ/conversion-step. IEEE J. Solid-State Circuits 48(12), 3011–3018 (2013)CrossRefGoogle Scholar
  24. 24.
    Kraemer, M., et al.: A 14 b 35 MS/s SAR ADC achieving 75 dB SNDR and 99 dB SFDR with loop-embedded input buffer in 40 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 284–285 (2015)Google Scholar
  25. 25.
    Verbruggen, B., Iriguchi, M., Craninckx, J.: A 1.7 mW 11 b 250 MS/s 2× interleaved fully dynamic pipelined SAR ADC in 40 nm digital CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 466–468 (2012)Google Scholar
  26. 26.
    Hershberg, B., et al.: Ring amplifiers for switched-capacitor circuits. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 460–462 (2012)Google Scholar
  27. 27.
    Lim, Y., Flynn, M.P.: 11.5 A 100 MS/s 10.5 b 2.46 mW comparator-less pipeline ADC using self-biased ring amplifiers. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 202–203 (2014)Google Scholar
  28. 28.
    Chang, D.-Y., et al.: 11.6 A 21 mW 15 b 48 MS/s zero-crossing pipeline ADC in 0.13 μm CMOS with 74 dB SNDR. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 204–205 (2014)Google Scholar
  29. 29.
    Dolev, N., Kramer, M., Murmann, B.: A 12-bit, 200-MS/s, 11.5-mW pipeline ADC using a pulsed bucket brigade front-end. In: IEEE Symposium VLSI Circuits—Digest Technical Papers, pp. 98–99 (2013)Google Scholar
  30. 30.
    Chai, Y., Wu, J.-T.: A 5.37 mW 10 b 200 MS/s dual-path pipelined ADC. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 462–464 (2012)Google Scholar
  31. 31.
    Verma, S., et al.: A 10.3 GS/s 6 b flash ADC for 10 G Ethernet applications. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 462–463 (2013)Google Scholar
  32. 32.
    Chen, V.H.-C., Pileggi, L.: 22.2 A 69.5 mW 20 GS/s 6 b time-interleaved ADC with embedded time-to-digital calibration in 32 nm CMOS SOI. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 380–381 (2014)Google Scholar
  33. 33.
    Shu, Y.-S.: A 6 b 3 GS/s 11 mW fully dynamic flash ADC in 40 nm CMOS with reduced number of comparators. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 26–27 (2012)Google Scholar
  34. 34.
    Narasimha, R., et al.: BER-optimal analog-to-digital converters for communication links. IEEE Trans. Signal Process. 60(7), 3683–3691 (2012)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Setterberg, B., et al.: A 14 b 2.5 GS/s 8-way-interleaved pipelined ADC with background calibration and digital dynamic linearity correction. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 466–467 (2013)Google Scholar
  36. 36.
    Wu, J., et al.: A 5.4 GS/s 12 b 500 mW pipeline ADC in 28 nm CMOS. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 92–93 (2013)Google Scholar
  37. 37.
    Sun, N., Lee, H.-S., Ham, D.: A 2.9-mW 11-b 20-MS/s pipelined ADC with dual-mode-based digital background calibration. In: Proceedings of European Solid-State Circuits Conference, pp. 269–272 (2012)Google Scholar
  38. 38.
    Le Dortz, N., et al.: 22.5 A 1.62 GS/s time-interleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70 dBFS. In: IEEE International Solid-State Circuits Conference—Digital Technical Papers, pp. 386–388 (2014)Google Scholar
  39. 39.
    Rao, S., et al.: A 4.1 mW, 12-bit ENOB, 5 MHz BW, VCO-based ADC with on-chip deterministic digital background calibration in 90 nm CMOS. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 68–69 (2013)Google Scholar
  40. 40.
    Taylor, G., Galton, I.: A reconfigurable mostly-digital ΔΣ ADC with a worst-case FOM of 160 dB. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 166–167 (2012)Google Scholar
  41. 41.
  42. 42.
    Yoon, D.-Y., Ho, S., Lee, H.-S.: An 85 dB DR 74.6 dB SNDR 50 MHz BW CT MASH delta-sigma modulator in 28 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 272–273 (2015)Google Scholar
  43. 43.
    Zhang, J., et al.: A 0.6 V 82 dB 28.6 µW continuous-time audio delta-sigma modulator. IEEE J. Solid-State Circuits 46(10), 2326–2335 (2011)CrossRefGoogle Scholar
  44. 44.
    Michel, F., Steyaert, M.S.: A 250 mV 7.5 μW 61 dB SNDR SC delta-sigma modulator using near-threshold-voltage-biased inverter amplifiers in 130 nm CMOS. IEEE J. Solid-State Circuits 47(3), 709–721 (2012)CrossRefGoogle Scholar
  45. 45.
    Yang, Z., Yao, L., Lian, Y.: A 0.5 V 35 µW 85 dB DR double-sampled delta-sigma modulator for audio applications. IEEE J. Solid-State Circuits 47(3), 722–735 (2012)CrossRefGoogle Scholar
  46. 46.
    Philips, K., et al.: A continuous-time sigma-delta ADC with increased immunity to interferers. IEEE J. Solid-State Circuits 39(12), 2170–2178 (2004)CrossRefGoogle Scholar
  47. 47.
    Rajan, R.S., Pavan, S.: Design techniques for continuous-time delta-sigma modulators with embedded active filtering. IEEE J. Solid-State Circuits 49(10), 2187–2198 (2014)CrossRefGoogle Scholar
  48. 48.
    Andersson, M., et al.: A filtering ΔΣ ADC for LTE and beyond. IEEE J. Solid-State Circuits 49(7), 1535–1547 (2014)CrossRefGoogle Scholar
  49. 49.
    Chae, Y., Han, G.: A low power sigma-delta modulator using class-C inverter. In: IEEE Symposium VLSI Circuits—Digest Technical Papers, pp. 240–241 (2007)Google Scholar
  50. 50.
    Chae, Y., Lee, I., Han, G.: A 0.7 V 36 μW 85 dB-DR audio delta-sigma modulator using Class-C inverter. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 490–491 (2008)Google Scholar
  51. 51.
    van Veldhoven, R.H.M., Rutten, R., Breems, L.J.: An inverter-based hybrid delta-sigma modulator. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 492–493 (2008)Google Scholar
  52. 52.
    Chae, Y., Han, G.: Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE J. Solid-State Circuits 44(2), 458–472 (2009)CrossRefGoogle Scholar
  53. 53.
    Perez, A.P., Bonizzoni, E., Maloberti, F.: A 84 dB SNDR 100 kHz bandwidth low-power single op-amp third-order delta-sigma modulator consuming 140 μW. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 478–480 (2011)Google Scholar
  54. 54.
    Chae, H., et al.: A 12 mW low-power continuous-time bandpass delta-sigma modulator with 58 dB SNDR and 24 MHz bandwidth at 200 MHz IF. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 148–150 (2012)Google Scholar
  55. 55.
    Matsukawa, K., et al.: A 10 MHz BW 50 fJ/conv. continuous time delta-sigma modulator with high-order single opamp integrator using optimization-based design method. In: IEEE Symposium on VLSI Circuits—Digital Technical Papers, pp. 160–161 (2012)Google Scholar
  56. 56.
    Christen, T.: A 15bit 140 µW scalable-bandwidth inverter-based Delta-Sigma modulator for a MEMS microphone with digital output. IEEE J. Solid-State Circuits 48(7), 1605–1614 (2013)CrossRefGoogle Scholar
  57. 57.
    Zeller, S., et al.: A 0.039 mm2 inverter-based 1.82mW 68.6 dB SNDR 10 MHz BW CT Sigma-Delta ADC in 65 nm CMOS using power- and area-efficient design techniques. IEEE J. Solid-State Circuits 49(7), 1548–1560 (2014)CrossRefGoogle Scholar
  58. 58.
    Weng, C.-H., et al.: An 8.5 MHz 67.2 dB SNDR CTDSM with ELD compensation embedded twin-T SAB and circular TDC-based quantizer in 90 nm CMOS. In: IEEE Symposium on VLSI Circuits—Digital Technical Papers, pp. 1–2 (2014)Google Scholar
  59. 59.
    Straayer, M.Z., Perrott, M.H.: A 12-Bit, 10-MHz bandwidth, continuous-time sigma-delta ADC with a 5-Bit, 950-MS/s VCO-based quantizer. IEEE J. Solid-State Circuits 43(3), 805–814 (2008)CrossRefGoogle Scholar
  60. 60.
    Park, M., Perrott, M.H.: A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time delta-sigma ADC with VCO-based integrator and quantizer implemented in 0.13 µm CMOS. IEEE J. Solid-State Circuits 44(12), 3344–3358 (2009)CrossRefGoogle Scholar
  61. 61.
    Reddy, K., et al.: A 16 mW 78 dB SNDR 10 MHz BW CT delta-sigma ADC using residue-cancelling VCO-based quantizer. IEEE J. Solid-State Circuits 47(12), 2916–2927 (2012)CrossRefGoogle Scholar
  62. 62.
    Asl, S.Z., et al.: A 77 dB SNDR, 4 MHz MASH ΔΣ modulator with a second-stage multi-rate VCO-based quantizer. In: Proceedings of IEEE Custom Integrated Circuits Conference, pp. 1–4 (2011)Google Scholar
  63. 63.
    Daniels, J., Dehaene, W., Steyaert, M.: A 0.02 mm2 65 nm CMOS 30 MHz BW all-digital differential VCO-based ADC with 64 dB SNDR. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 155–156 (2010)Google Scholar
  64. 64.
    Taylor, G., Galton, I.: A mostly-digital variable-rate continuous-time delta-sigma modulator ADC. IEEE J. Solid-State Circuits 45(12), 2634–2646 (2010)CrossRefGoogle Scholar
  65. 65.
    Rao, S., et al.: A 71 dB SFDR open loop VCO-based ADC using 2-level PWM modulation. In: IEEE Symposium on VLSI Circuits—Digest Technical Papers, pp. 270–271 (2011)Google Scholar
  66. 66.
    Taylor, G., Galton, I.: A reconfigurable mostly-digital delta-sigma ADC with a worst-case FOM of 160 dB. IEEE J. Solid-State Circuits 48(4), 983–995 (2013)CrossRefGoogle Scholar
  67. 67.
    Rao, S., et al.: A deterministic digital background calibration technique for VCO-based ADCs. IEEE J. Solid-State Circuits 49(4), 950–960 (2014)CrossRefGoogle Scholar
  68. 68.
    Prefasi, E., et al.: A 0.1 mm2 wide bandwidth continuous-time Sigma-Delta ADC based on a time encoding quantizer in 0.13 µm CMOS. IEEE J. Solid-State Circuits 44(10), 2745–2754 (2009)CrossRefGoogle Scholar
  69. 69.
    De Vuyst, B., Rombouts, P.: A 5 MHz 11Bit self-oscillating sigma-delta modulator with a delay-based phase shifter in 0.025mm2. IEEE J. Solid-State Circuits 46(8), 1919–1927 (2011)CrossRefGoogle Scholar
  70. 70.
    Prefasi, E., Paton, S., Hernandez, L.: A 7 mW 20 MHz BW time-encoding oversampling converter implemented in a 0.08 mm2 65 nm CMOS circuit. IEEE J. Solid-State Circuits 46(7), 1562–1574 (2011)CrossRefGoogle Scholar
  71. 71.
    Dhanasekaran, V., et al.: A continuous-time multi-bit delta-sigma ADC using time domain quantizer and feedback element. IEEE J. Solid-State Circuits 46(3), 639–650 (2011)CrossRefGoogle Scholar
  72. 72.
    Dhanasekaran, V., et al.: A 20 MHz BW 68 dB DR CT delta-sigma ADC based on a multi-bit time-domain quantizer and feedback element. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 174–175, 175a (2009)Google Scholar
  73. 73.
    Oliaei, O.: Sigma-delta modulator with spectrally shaped feedback. IEEE Trans. Circuits Syst. II, Analog Dig. Signal Process. 50(9), 518–530 (2003)CrossRefGoogle Scholar
  74. 74.
    Putter, B.: Sigma-delta ADC with finite impulse response feedback DAC. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 76–76 (2004)Google Scholar
  75. 75.
    Shettigar, P., Pavan, S.: A 15 mW 3.6 GS/s CT delta-sigma ADC with 36 MHz bandwidth and 83 dB DR in 90 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 156–158 (2012)Google Scholar
  76. 76.
    Srinivasan, V.: A 20 mW 61 dB SNDR (60 MHz BW) 1 b 3rd-order continuous-time delta-sigma modulator clocked at 6 GHz in 45 nm CMOS. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 158–160 (2012)Google Scholar
  77. 77.
    Shettigar, P., Pavan, S.: Design techniques for wideband single-bit continuous-time Delta-Sigma modulators with FIR feedback DACs. IEEE J. Solid-State Circuits 47(12), 2865–2879 (2012)CrossRefGoogle Scholar
  78. 78.
    Healy, D., Brady, D.J.: Compression at the physical interface. IEEE Signal Process. Mag. 25(2), 67–71 (2008)CrossRefADSGoogle Scholar
  79. 79.
    Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)CrossRefADSGoogle Scholar
  81. 81.
    Gangopadhyay, D., et al.: Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid-State Circuits 49(2), 426–438 (2014)CrossRefGoogle Scholar
  82. 82.
    Oike, Y., El Gamal, A.: CMOS image sensor with per-column ΣΔ ADC and programmable compressed sensing. IEEE J. Solid-State Circuits 48(1), 318–328 (2013)CrossRefGoogle Scholar
  83. 83.
    Yoo, J., et al.: A 100 MHz–2 GHz 12.5x sub-Nyquist rate receiver in 90 nm CMOS. In: Proceedings of RF IC Symposium, pp. 31–34 (2012)Google Scholar
  84. 84.
    Abari, O., et al.: Performance trade-offs and design limitations of analog-to-information converter front-ends. In: Proceedings of International Conference Acoustics, Speech, Signal Processing, pp. 5309–5312 (2012)Google Scholar
  85. 85.
    Mishali, M., Eldar, Y.: Sub-Nyquist sampling. IEEE Signal Process. Mag. 28(6), 98–124 (2011)CrossRefADSGoogle Scholar
  86. 86.
    Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417–1428 (2002)MathSciNetCrossRefADSGoogle Scholar
  87. 87.
    Tur, R., Eldar, Y.C., Friedman, Z.: Innovation rate sampling of pulse streams with application to ultrasound imaging. IEEE Trans. Signal Process. 59(4), 1827–1842 (2011)MathSciNetCrossRefADSGoogle Scholar
  88. 88.
    Muramatsu, Y., et al.: A signal-processing CMOS image sensor using a simple analog operation. IEEE J. Solid-State Circuits 38(1), 101–106 (2003)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Choi, J., et al.: A 3.4-μW object-adaptive CMOS image sensor with embedded feature extraction algorithm for motion-triggered object-of-interest imaging. IEEE J. Solid-State Circuits 49(1), 289–300 (2014)CrossRefGoogle Scholar
  90. 90.
    Badami, K., et al.: Context-aware hierarchical information-sensing in a 6 μW 90 nm CMOS voice activity detector. In: IEEE International Solid-State Circuits Conference—Digest Technical Papers, pp. 430–431 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthias Keller
    • 1
    Email author
  • Boris Murmann
    • 2
  • Yiannos Manoli
    • 1
  1. 1.Department of Microsystems Engineering—IMTEKUniversity of FreiburgFreiburgGermany
  2. 2.Stanford UniversityStanfordUSA

Personalised recommendations