Advertisement

Energy-Harvesting Applications and Efficient Power Processing

  • T. HehnEmail author
  • D. Hoffmann
  • M. Kuhl
  • J. Leicht
  • N. Lotze
  • C. Moranz
  • D. Rossbach
  • K. Ylli
  • Y. Manoli
Chapter
Part of the The Frontiers Collection book series (FRONTCOLL)

Abstract

In comparison to the original chapter in CHIPS 2020 Manoli et al. (CHIPS 2020—A Guide to the Future of Nanoelectronics: 329–420, 2012) [1], this chapter presents more application-oriented research with a focus on wearable devices and condition monitoring. It also covers electronic circuit components and systems employed in extracting, processing, and storing the harvested power. In the meantime, many innovative enhancements in terms of efficiency and applicability have been achieved by developing dedicated CMOS integrated circuits.

Keywords

Energy Harvester Charge Pump Thermoelectric Generator Boost Converter Interface Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Manoli, Y., Hehn, T., et al.: Energy harvesting and chip autonomy, chapter 19. In: Hoefflinger, B. (ed.) CHIPS 2020—A Guide to the Future of Nanoelectronics, pp. 393–420. Springer, Berlin (2012)Google Scholar
  2. 2.
    Leonov, V.: Thermoelectric energy harvesting of human body heat for wearable sensors. IEEE Sensors J. 13(6), 2284–2291 (2013)CrossRefGoogle Scholar
  3. 3.
    Chen, T., Qiu, L., et al.: Novel solar cells in a wire format. Chem. Soc. Rev. 42(12), 5031 (2013)CrossRefGoogle Scholar
  4. 4.
    Bedeloglu, A.C., Demir, A., et al.: A photovoltaic fiber design for smart textiles. Text. Res. J. 80(11), 1065–1074 (2010)CrossRefGoogle Scholar
  5. 5.
    Zeng, W., Tao, X.-M., et al.: Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 6(9), 2631 (2013)CrossRefGoogle Scholar
  6. 6.
    Qin, Y., Wang, X., et al.: Microfibre-nanowire hybrid structure for energy scavenging. Nature 451(7180), 809–813 (2008)CrossRefADSGoogle Scholar
  7. 7.
    Niu, P., Chapman, P., et al.: Evaluation of motions and actuation methods for biomechanical energy harvesting. In: 2004 IEEE 35th Annual Power Electronics Specialists Conference, pp. 2100–2106Google Scholar
  8. 8.
    Kornbluh, R., Pelrine, R., et al.: Electroelastomers: applications of dielectric elastomer transducers for actuation, generation and smart structures. In: SPIE’s 9th Annual International Symposium on Smart Structures and Materials, vol. 4698, pp. 254–270 (2002)Google Scholar
  9. 9.
    Kymissis, J., Kendall, C., et al.: Parasitic power harvesting in shoes. In: Digest of Papers of Second International Symposium on Wearable Computers, pp. 132–139 (1998)Google Scholar
  10. 10.
    Bai, P., Zhu, G., et al.: Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7(4), 3713–3719 (2013)CrossRefGoogle Scholar
  11. 11.
    Zhu, G., Bai, P., et al.: Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2(5), 688–692 (2013)CrossRefGoogle Scholar
  12. 12.
    Ylli, K., Hoffmann, D., et al.: Energy harvesting from human motion: exploiting swing and shock excitations. Smart Mater. Struct. 24(2), 025029 (2015)CrossRefADSGoogle Scholar
  13. 13.
    Ylli, K., Hoffmann, D., et al.: Design, fabrication and characterization of an inductive human motion energy harvester for application in shoes. In: Proceedings of PowerMEMS 2013, London (UK), Journal of Physics: Conference Series, vol. 476, p. 12012Google Scholar
  14. 14.
    Carroll, D., Duffy, M.: Modelling, design, and testing of an electromagnetic power generator optimized for integration into shoes. In: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 226, no. 2, pp. 256–270 (2012)Google Scholar
  15. 15.
    Ylli, K., Hoffmann, D., et al.: Human motion energy harvesting for AAL applications. In: Proceedings of PowerMEMS 2014, Awaji (Japan), Journal of Physics: Conference Series, vol. 557, p. 012024 (2014)Google Scholar
  16. 16.
    Weddell, S., Zhu, D., et al.: A practical self-powered sensor system with a tunable vibration energy harvester. In: Proceedings of PowerMEMS 2012, Atlanta, USA, pp. 105–108Google Scholar
  17. 17.
    Hoffmann, D., Willmann, A., et al.: Tunable vibration energy harvester for condition monitoring of maritime gearboxes. J. Phys. Conf. Ser. 557, 012099 (2014)Google Scholar
  18. 18.
    Finkenzeller, K.: RFID Handbook. Wiley, New York (2003)CrossRefGoogle Scholar
  19. 19.
    Karthaus, U., Fischer, M.: Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power. IEEE J. Solid-State Circ 38(10), 1602–1608 (2003)CrossRefGoogle Scholar
  20. 20.
    Lazzi, G.: Thermal effects of bioimplants. Eng. Med. Biol. Mag. 24(5), 75–81 (2005)CrossRefGoogle Scholar
  21. 21.
    Opie, N.L., Burkitt A.N., et al.: Thermal heating of a retinal prosthesis: thermal model and in-vitro study, Engineering in Medicine and Biology Society (EMBC). In: 2010 Annual International Conference of the IEEE, pp. 1597–1600Google Scholar
  22. 22.
    Peters, C., Kessling, O., et al.: CMOS integrated highly efficient full wave rectifier. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2415–2418 (2007)Google Scholar
  23. 23.
    Ghovanloo, M., Najafi, K.: Fully integrated wideband high-current rectifiers for inductively powered devices. IEEE J. Solid-State Circ. 39(11), 1976–1984 (2004)CrossRefGoogle Scholar
  24. 24.
    Kuhl, M., Gieschke, P., et al.: A wireless stress mapping system for orthodontic brackets using CMOS integrated sensors. IEEE J. Solid-State Circ. 48(9), 2191–2202 (2013)CrossRefGoogle Scholar
  25. 25.
    Peters, C., Henrici, F., et al.: High-bandwidth floating gate CMOS rectifiers with reduced voltage drop. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2598–2601 (2008)Google Scholar
  26. 26.
    Kiani, M., Ghovanloo, M.: An RFID-based closed-loop wireless power transmission system for biomedical applications. IEEE Trans. Circ. Syst. II Express Briefs 57(4), 260–264 (2010)CrossRefGoogle Scholar
  27. 27.
    Silay, K.M., Dehollain, C., et al.: A closed-loop remote powering link for wireless cortical implants. IEEE Sens. J. 13(9), 3226–3235 (2013)CrossRefGoogle Scholar
  28. 28.
    O’Driscol, S.D.: A mm-sized implantable power receiver with adaptive matching. In Proceedings of IEEE Sensors, pp. 83–88 (2010)Google Scholar
  29. 29.
    Kazanc, O., Maloberti, F., et al.: High-Q adaptive matching network for remote powering of UHF RFIDs and wireless sensor systems. In: IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp. 10–12 (2013)Google Scholar
  30. 30.
    Hehn, T., Manoli, Y.: CMOS Circuits for Piezoelectric Energy Harvesters: Efficient Power Extraction, Interface Modeling and Loss Analysis. Springer, Berlin (2014)Google Scholar
  31. 31.
    Peters, C., Handwerker, J., et al.: A Sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Trans. Circ. Syst. I: Regul. Pap. 58(7), 1542–1550 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Colomer-Farrarons, J., Miribel Catala, P., et al.: A 60 µW low-power low-voltage power management unit for a self-powered system based on low-cost piezoelectric powering generators. In: Proceedings of European Solid-State Circuits Conference (ESSCIRC), pp. 280–283 (2009)Google Scholar
  33. 33.
    Rao, Y., Cheng, S., et al.: A fully self-sufficient energy harvesting system for human movements. In: Proceedings of PowerMEMS 2012, Atlanta, GA, USA, pp. 101–104Google Scholar
  34. 34.
    Hehn, T., Hagedorn, F., et al.: A fully autonomous integrated interface circuit for piezoelectric harvesters. IEEE J. Solid State Circ. 47(9), 2185–2198 (2012)CrossRefGoogle Scholar
  35. 35.
    Lefeuvre, E., et al.: Piezoelectric energy harvesting device optimization by synchronous electric charge extraction. J. Intell. Mater. Syst. Struct. 16(10), 865–876 (2005)CrossRefGoogle Scholar
  36. 36.
    Dallago, E., Miatton, D., et al.: Electronic interface for piezoelectric energy scavenging system. In: 34th European Solid-State Circuits Conference (ESSCIRC), pp. 402–405 (2008)Google Scholar
  37. 37.
    Gasnier, P., Willemin, J., et al.: An autonomous piezoelectric energy harvesting IC based on a synchronous multi-shots technique. In: Proceedings of European Solid-State Circuits Conference (ESSCIRC), pp. 399–402 (2013)Google Scholar
  38. 38.
    Aktakka, E.E., Peterson, R.L., et al.: A self-supplied inertial piezoelectric energy harvester with power-management IC. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 120–121 (2011)Google Scholar
  39. 39.
    Ishida, K., Tsung, C.H., et al.: Insole pedometer with piezoelectric energy harvester and 2 V organic circuits. IEEE J. Solid State Circ. 48(1), 255–264 (2013)CrossRefGoogle Scholar
  40. 40.
    Manoli, Y.: Energy harvesting—from devices to systems. In: Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 27–36, Sept 2010Google Scholar
  41. 41.
    Spreemann, D., Manoli, Y.: Electromagnetic Vibration Energy Harvesting Devices: Architectures, Design, Modeling and Optimization. Springer, Berlin (2012)CrossRefGoogle Scholar
  42. 42.
    van Liempd, C., Stanzione, S., et al.: A 1 µW to 1 mW energy aware interface ic for piezoelectric harvesting with 40 nA quiescent current and zero-bias active rectifiers. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 76–77, Feb 2013Google Scholar
  43. 43.
    Maurath, D., Becker, P.F., et al.: Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking. IEEE J. Solid State Circ. 47(6), 1369–1380Google Scholar
  44. 44.
    Gao, Y., Made, D.I., et al.: An energy-autonomous piezoelectric energy harvester interface circuit with 0.3 V startup voltage. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 445–448, Nov 2013Google Scholar
  45. 45.
    Shim, M., Kim, J., et al.: Self-powered 30 μW-to-10 mW piezoelectric energy-harvesting system with 9.09 ms/V maximum power point tracking time. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 406–407, Feb 2014Google Scholar
  46. 46.
    Leicht, J., Maurath, D., et al.: Autonomous and self-starting efficient micro energy harvesting interface with adaptive MPPT, buffer monitoring, and voltage monitoring. In: Proceedings of IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 101–104, Sept 2012Google Scholar
  47. 47.
    Leicht, J., Amayreh, M., et al.: Electromagnetic vibration energy harvester interface IC with conduction-angle-controlled maximum-power-point tracking and harvesting efficiencies of up to 90 %. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 368–370, Feb 2015Google Scholar
  48. 48.
    Hoefflinger, B.: The future of eight chip technologies, chapter 3. In: Hoefflinger, B. (ed.) CHIPS 2020—A Guide to the Future of Nanoelectronics, pp. 37–93. Springer, Berlin (2012)Google Scholar
  49. 49.
    Zimmermann, D., Becker, J., et al.: On-chip micro fuel cells as power supply for smart microsystems. In: Proceedings of International Conference and Exhibition on Integration Issues of Miniaturized Systems (SSI) (2012)Google Scholar
  50. 50.
    Moranz, C., Kuhl, M., et al.: A digitally adjusted power supply for systems-on-chip based on CMOS integrated fuel cells. In: Proceedings of PowerMEMS 2011, pp. 86–89 (2011)Google Scholar
  51. 51.
    Moranz, C., Kuhl, M., et al.: CMOS integrierte Spannungsversorgung basierend auf Mikro-Brennstoffzellen. In: Proc. Mikrosystemtechnik-Kongress, pp. 275–278 (2013)Google Scholar
  52. 52.
    Zimmermann, D., Freund, I., et al.: Rechargeable micro fuel cells as power supply for smart microsystems. In: Proceedings of International Conference and Exhibition on Integration Issues of Miniaturized Systems (SSI) (2013)Google Scholar
  53. 53.
    Doms, I., Merken, P., et al.: Capacitive power management circuit for micropower thermoelectric generators with a 1.4 µA controller. IEEE J. Solid-State Circ. 44(10), 2824–2833 (2009)CrossRefGoogle Scholar
  54. 54.
    Carlson, E.J., Strunz, K., et al.: A 20 mV input boost converter with efficient digital control for thermoelectric energy harvesting. IEEE J. Solid-State Circ. 45(4), 741–750 (2010)CrossRefGoogle Scholar
  55. 55.
    Ramadass, Y.K., Chandrakasan, A.P.: A battery-less thermoelectric energy harvesting interface circuit with 35 mV startup voltage. IEEE J. Solid-State Circ. 46(1), 333–341 (2011)CrossRefGoogle Scholar
  56. 56.
    Im, J.-P., Wang, S.-W., et al.: A 40 mV transformer-reuse self-startup boost converter with MPPT control for thermoelectric energy harvesting. IEEE J. Solid-State Circ. 47(12), 3055–3067 (2012)CrossRefGoogle Scholar
  57. 57.
    Weng, P.-S., Tang, H.-Y., et al.: 50 mV-input batteryless boost converter for thermal energy harvesting. IEEE J. Solid-State Circ. 48(4), 1031–1041 (2013)CrossRefGoogle Scholar
  58. 58.
    Ahmed, K.Z., Mukhopadhyay, S.: A wide conversion ratio, extended input 3.5-μA boost regulator with 82 % efficiency for low-voltage energy harvesting. IEEE Trans. Power Electron. 29(9), 4776–4786 (2014)CrossRefGoogle Scholar
  59. 59.
    The, Y.-K., Mok, P.K.T.: Design of transformer-based boost converter for high internal resistance energy harvesting sources with 21 mV self-startup voltage and 74 % power efficiency. IEEE J. Solid-State Circ. 49(11), 2694–2704 (2014)CrossRefGoogle Scholar
  60. 60.
    Leicht, J., Heilmann, P., et al.: Thermoelectric energy harvesting system for demonstrating autonomous operation of a wireless sensor node enabled by a multipurpose interface. J. Phys. Conf. Ser. 467, 1–5 (2013)Google Scholar
  61. 61.
    Leicht, J., Heilmann, P., et al.: Wireless anti-theft alarm system for automobiles based on thermoelectric energy harvesting powered glass break detection. In: Proceedings of 7th VDE GMM-Workshop 2014, pp. 74–77Google Scholar
  62. 62.
    Kadirvel, K., Ramadass, Y., et al.: A 330 nA energy-harvesting charger with battery management for solar and thermoelectric energy harvesting. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 106–107, Feb 2012Google Scholar
  63. 63.
    Texas Instruments: bq25504—Ultra Low Power Boost Converter with Battery Management for Energy Harvester Applications, Rev. A, Oct. 2011, Revised Sept 2012. http://www.ti.com/product/bq25504. Accessed December 2014
  64. 64.
    Qiu, Y., Van Liempd, C., et al.: 5 μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 118–119, Feb 2011Google Scholar
  65. 65.
    Kim, J., Kim, C.: A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting. IEEE Trans. Circuits Syst. II Exp. Briefs 58(12), 802–806 (2011)CrossRefGoogle Scholar
  66. 66.
    Bandyopadhyay, S., Chandrakasan, A.P.: Platform architecture for solar, thermal, and vibration energy combining with MPPT and single inductor. IEEE J. Solid-State Circ. 47(9), 2199–2215 (2012)CrossRefGoogle Scholar
  67. 67.
    Chew, K.W.R., Sun, Z.: A 400 nW single-inductor dual-input-tri-output DC-DC buck-boost converter with maximum power point tracking for indoor photovoltaic energy harvesting. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 68–69, Feb 2013Google Scholar
  68. 68.
    Jung, W., Oh, S., et al.: An ultra-low power fully integrated energy harvester based on self-oscillating switched-capacitor voltage doubler. IEEE J. Solid-State Circ. 49(12), 2800–2811 (2014)CrossRefGoogle Scholar
  69. 69.
    Çilingiroğlu, U., Tar, B., et al.: On-chip photovoltaic energy conversion in bulk-CMOS for indoor applications. IEEE Trans. Circuits Syst. I Reg. Pap. 61(8), 2491–2504 (2014)Google Scholar
  70. 70.
    Maurath, D., Manoli, Y.:, CMOS Circuits for Electromagnetic Vibration Transducers, Springer, Berlin (2014)Google Scholar
  71. 71.
    Peng, H., Tang, N., et al.: CMOS startup charge pump with body bias and backward control for energy harvesting step-up converters. IEEE Trans. Circuits Syst. I Reg. Pap. 61(6), 1618–1628 (2014)CrossRefGoogle Scholar
  72. 72.
    Kim, J., Amayreh, M., et al.: A 0.15 V-input energy-harvesting charge pump with switching body biasing and adaptive dead-time for efficiency improvement. In: IEEE International Solid-State Circuits Conference (ISSCC), Digital Technical Papers, pp. 394–395, Feb 2014Google Scholar
  73. 73.
    Chen, P.-H., Ishida, K., et al.: Startup techniques for 95 mV step-up converter by capacitor pass-on scheme and VTH tuned oscillator with fixed charge programming. IEEE J. Solid-State Circ. 47(5), 1252–1260 (2012)CrossRefGoogle Scholar
  74. 74.
    Peters, C., Henrici, F., et al.: High-bandwith floating gate CMOS rectifiers with reduced voltage drop. In: Proceedings of IEEE International Symposium on Circuits Systems (ISCAS), pp. 2598–2601 (2008)Google Scholar
  75. 75.
    Stanzione, S., van Liempd, C., et al.: A high voltage self-biased integrated DC-DC buck converter with fully analog MPPT algorithm for electrostatic energy harvesters. IEEE J. Solid-State Circ. 48(12), 3002–3010 (2013)CrossRefGoogle Scholar
  76. 76.
    Bandyopadhyay, S., Mercier, P.P., et al.: A 1.1 nW energy-harvesting system with 544 pW quiescent power for next-generation implants. IEEE J. Solid-State Circ. 49(12), 2812–2824 (2014)CrossRefGoogle Scholar
  77. 77.
    Aktakka, E.E., Najafi, K.: A micro inertial energy harvesting platform with self-supplied power management circuit for autonomous wireless sensor nodes. IEEE J. Solid-State Circ. 49(9), 2185–2198 (2014)CrossRefGoogle Scholar
  78. 78.
    Kwon, D., Rincón-Mora, G.A.: A Single-Inductor 0.35 μm CMOS Energy-Investing Piezoelectric Harvester. IEEE J. Solid-State Circ. 49(10), 2277–2291 (2014)CrossRefGoogle Scholar
  79. 79.
    Chandrakasan, A.: Sub-threshold Design for Ultra Low-Power Systems. Springer, Berlin (2006)Google Scholar
  80. 80.
    Redl, R., Sun, J.: Ripple-based control of switching regulators—an overview. IEEE Trans. Power Electron. 24(12), 2669–2680 (2009)CrossRefGoogle Scholar
  81. 81.
    Hwang, M.-E., Roy, K.: ABRM: adaptive beta-ratio modulation for process-tolerant ultradynamic voltage scaling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18(2), 281–290 (2010)Google Scholar
  82. 82.
    Lotze, N., Manoli, Y.: A 62 mV 0.13 um CMOS standard-cell-based design technique using schmitt-trigger logic, solid-state circuits. IEEE J. Solid-State Circ. 47(1), 47–60 (2012)CrossRefGoogle Scholar
  83. 83.
    Hsieh, C.-Y., Fan, M.-L., et al.: Independently-controlled-gate FinFET Schmitt trigger sub-threshold SRAMs. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(7), 1201–1210 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • T. Hehn
    • 1
    Email author
  • D. Hoffmann
    • 1
  • M. Kuhl
    • 2
  • J. Leicht
    • 2
  • N. Lotze
    • 2
  • C. Moranz
    • 2
  • D. Rossbach
    • 1
  • K. Ylli
    • 1
  • Y. Manoli
    • 1
    • 2
  1. 1.Hahn-Schickard-Gesellschaft für angewandte Forschung e.V.Villingen-SchwenningenGermany
  2. 2.Department of Microsystems Engineering—IMTEKAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations