Perception-Inspired High Dynamic Range Video Coding and Compression

Part of the The Frontiers Collection book series (FRONTCOLL)


High-Dynamic Range (HDR) images and video can represent much greater color gamut, brightness and contrast than commonly used standard dynamic range images. When HDR video is presented on specialized HDR displays, a substantial increase of realism can be observed, sometimes compared to “looking through a window”. Efficient encoding of such video, however, imposes new challenges. In this chapter we argue that adjusting the accuracy of broadcasted HDR video to the capabilities of the human visual system is the key requirement to achieve these goals. Another example of HDR signal is a depth image used in stereoscopic and multi-view imaging systems. When encoding is designed to capitalize from the characteristics and limitations of depth perception, significant compression gains can be achieved.


  1. 1.
    Myszkowski, K., Mantiuk, R.K., Krawczyk, G.: High dynamic range video. In: Synthesis Digital Library of Engineering and Computer Science. Morgan & Claypool Publishers, San Rafael, USA (2008)Google Scholar
  2. 2.
    Mantiuk, R.K., Myszkowski, K., Seidel, H.P.: Lossy compression of high dynamic range images and video. In: Proceedings of Human Vision and Electronic Imaging XI, volume 6057 of Proceedings of SPIE, page 60570 V, San Jose, USA. SPIE, Bellingham (2006)Google Scholar
  3. 3.
    Mantiuk, R., Daly, S.J., Myszkowski, K., Seidel, H.P.: Predicting visible differences in high dynamic range images: model and its calibration. In: Human Vision and Electronic Imaging 204–214 (2005).
  4. 4.
    Mantiuk, R.K., Krawczyk, G., Myszkowski, K., Seidel, H.P.: Perception-motivated high dynamic range video encoding. ACM Trans. Gr. (Proceedings of SIGGRAPH), 23(3), 730–738 (2004)Google Scholar
  5. 5.
    Miller, S., Nezamabadi, M., Daly, S.: Perceptual signal coding for more efficient usage of bit codes. SMPTE Motion Imag. J. 122(4), 52–59 (2013)CrossRefGoogle Scholar
  6. 6.
    Reinhard, E., Ward, G., Debevec, P., Pattanaik, S., Heidrich, W., Myszkowski, K.: High Dynamic Range Imaging, 2nd edn. Morgan Kaufmann Publishers (2010)Google Scholar
  7. 7.
    Daly, S.: The visible differences predictor: an algorithm for the assessment of image fidelity. In: Andrew B. Watson (ed.), Digital Images and Human Vision, pp. 179–206. MIT Press, Cambridge (1993)Google Scholar
  8. 8.
    Barten, P.G.J.: Formula for the contrast sensitivity of the human eye. In: Miyake, Y., Rene Rasmussen, D. (eds.): Proceedings of SPIE 5294, Image Quality and System Performance, pp. 231–238 (2004)Google Scholar
  9. 9.
    Boitard, R., Mantiuk, R.K., Pouli, T.: Evaluation of color encodings for high dynamic range pixels. In: Human Vision and Electronic Imaging, p. 93941K (2015).
  10. 10.
    Mantiuk, R.K., Myszkowski, K., Seidel, H.P.: High dynamic range imaging. In: Webster, J.G. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering. Wiley, New York (2015)Google Scholar
  11. 11.
    Sullivan, G.J., Yu, H., Sekiguchi, S., Sun, H., Wedi, T., Wittmann, S., Lee, Y., Segall, A., Suzuki, T.: New standardized extensions of MPEG4-AVC/H. 264 for professional-quality video applications. In: Proceedings of ICIP’07 (2007)Google Scholar
  12. 12.
    Mantiuk, R.K., Efremov, A., Myszkowski, K., Seidel, H.P.: Backward compatible high dynamic range mpeg video compression. ACM Trans. Gr. (Proceedings of SIGGRAPH), 25(3) (2006)Google Scholar
  13. 13.
    Ward, G., Simmons, M.: Subband encoding of high dynamic range imagery. In: APGV ’04: 1st symposium on applied perception in graphics and visualization, pp. 83–90 (2004)Google Scholar
  14. 14.
    Mai, Z., Mansour, H., Mantiuk, R.K., Nasiopoulos, P., Ward, R., Heidrich, W.: Optimizing a tone curve for backward-compatible high dynamic range image and video compression. IEEE Trans. Image Process. 20(6), 1558–1571 (2011)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Winken, M., Marpe, D., Schwarz, H., Wiegand, T.: Bit-depth scalable video coding. In: 2007 IEEE International Conference on Image Processing, volume 1, pages I-5–I-8. IEEE, New York (2007)Google Scholar
  16. 16.
    Segall, A.: Scalable coding of high dynamic range video. In: 2007 IEEE International Conference on Image Processing, vol. 1, pp. I-1–I-4 (2007)Google Scholar
  17. 17.
    Daly, S.J., Held, R.T., Hoffman, D.M.: Perceptual issues in stereoscopic signal processing. IEEE Trans. Broadcast. 57(2), 347–361 (2011)CrossRefGoogle Scholar
  18. 18.
    Fehn, C.: Depth-image-based rendering (DIBR), compression, and transmission for a new approach on 3D-TV. In: Stereoscopic Displays and Virtual Reality Systems XI, vol. 5291, pp. 93–104. SPIE, Bellingham (2004)Google Scholar
  19. 19.
    Merkle, P., Morvan, Y., Smolic, A., Farin, D., Müller, K., de With, P.H.N., Wiegand, T.: The effects of multiview depth video compression on multiview rendering. Signal Proc. Image Commun. 24(1–2) (2009)Google Scholar
  20. 20.
    Pajak, D., Herzog, R., Mantiuk, R., Didyk, P., Eisemann, E., Myszkowski, K., Pulli, K.: Perceptual depth compression for stereo applications. Comput. Gr. Forum (Proceedings of Eurographics 2014), 33(2), 195–204 (2014)Google Scholar
  21. 21.
    Didyk, P., Ritschel, T., Eisemann, E., Myszkowski, K., Seidel, H.P., Matusik, W.: A luminance-contrast-aware disparity model and applications. ACM Trans. Graph. (Proceedings of SIGGRAPH Asia), 31(6) Article No. 184 (2012)Google Scholar
  22. 22.
    Bradshaw, M.F., Rogers, B.J.: Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vision. Res. 39(18), 3049–3056 (1999)CrossRefGoogle Scholar
  23. 23.
    Aydn, T.O., Stefanoski, N., Croci, S., Gross, M., Smolic, A.: Temporally coherent local tone mapping of HDR video. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 33(6), 196:1–196:13 (2014)Google Scholar
  24. 24.
    Eilertsen, G., Wanat, R., Mantiuk, R.K., Unger, J.: Evaluation of tone mapping operators for hdr-video. Comput. Gr. Forum 32(7), 275–284 (2013)CrossRefGoogle Scholar
  25. 25.
    Mantiuk, R.K., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Gr. (Proceedings of SIGGRAPH), 30(4), 40:1–40:14 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Computer ScienceBangor UniversityBangorUK
  2. 2.Department 4: Computer GraphicsMax-Planck-Institute for InformaticsSaarbrueckenGermany

Personalised recommendations