The Utilisation of Dynamic Neural Networks for Medical Data Classifications- Survey with Case Study

  • Abir Jaafar Hussain
  • Paul Fergus
  • Dhiya Al-Jumeily
  • Haya Alaskar
  • Naeem Radi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9227)


Various recurrent neural networks have been utilised for medical data analysis and classifications. In this paper, the ability of using dynamic neural network to medicine related problems has been examined. Furthermore, a survey on the use of recurrent neural network architectures in medical applications will be discussed. A case study using the Elman, the Jordan and Layer recurrent networks for the classifications of Uterine Electrohysterography signals for the prediction of term and preterm delivery for pregnant women are presented.


Uterine EMG signals Dynamic neural network Features extraction 


  1. 1.
    Arvind, R., Karthik, B., Sriraam, N., Kannan, J.K.: Automated detection of PD resting tremor using PSD with recurrent neural network classifier. In: 2010 International Conference on Advances in Recent Technologies in Communication and Computing, pp. 414–417 (2010). doi: 10.1109/ARTCom.2010.33
  2. 2.
    Baghamoradi, S., Naji, M., Aryadoost, H.: Evaluation of cepstral analysis of EHG signals to prediction of preterm labor. In: 18th Iranian Conference on Biomedical Engineering, pp. 1–3, Tehran, Iran (2011)Google Scholar
  3. 3.
    Chendeb, M., Khalil, M., Hewson, D., Duchêne, J.: Classification of non stationary signals using multiscale decomposition. J. Biomed. Sci. Eng. 03(02), 193–199 (2010). doi: 10.4236/jbise.2010.32025 zbMATHCrossRefGoogle Scholar
  4. 4.
    Chung, J.R., Kwon, J., Choe, Y.: Evolution of recollection and prediction in neural networks. In: 2009 International Joint Conference on Neural Networks, pp. 571–577 (2009). doi: 10.1109/IJCNN.2009.5179065
  5. 5.
    Übeyli, E.D.: Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Syst. Appl. 37(2), 1192–1199 (2010). doi: 10.1016/j.eswa.2009.06.022 CrossRefGoogle Scholar
  6. 6.
    Fele-Žorž, G., Kavšek, G., Novak-Antolič, Z., Jager, F.: A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med. Biol. Eng. Compu. 46(9), 911–922 (2008). doi: 10.1007/s11517-008-0350-y CrossRefGoogle Scholar
  7. 7.
    Forney, E.M., Anderson, C.W.: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks. In: The 2011 International Joint Conference on Neural Networks, pp. 2749–2755 (2011). doi: 10.1109/IJCNN.2011.6033579
  8. 8.
    Garfield, R.E., Maner, W.L., MacKay, L.B., Schlembach, D., Saade, G.R.: Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am. J. Obstet. Gynecol. 193(1), 23–29 (2005). doi: 10.1016/j.ajog.2005.01.050 CrossRefGoogle Scholar
  9. 9.
    Guler, N., Ubeyli, E., Guler, I.: Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst. Appl. 29(3), 506–514 (2005). doi: 10.1016/j.eswa.2005.04.011 CrossRefGoogle Scholar
  10. 10.
    Haykin, S.: Neural Networks A comprehensive Foundation. Prentice Hall PTR, New Jersey (1998)Google Scholar
  11. 11.
    Ilbay, K., Übeyli, E. D., Ilbay, G., Budak, F.: A new application of recurrent neural networks for EMG-based diagnosis of carpal tunnel syndrome. In: Cardot, H. (ed.), Recurrent Neural Network for Temporal Data Processing. InTech (2011). doi: 10.5772/631
  12. 12.
    Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Temporal sequence processing using recurrent SOM. In: Proceedings of the Second International Conference Knowledge-Based Intelligent Electronic Systems, pp. 21–23. IEEE, Adelaide. Accessed 1998
  13. 13.
    Kumar, S.P., Sriraam, N., Benakop, P.G.: Automated detection of epileptic seizures using wavelet entropy feature with recurrent neural network classifier. In: TENCON 2008–2008 IEEE Region 10 Conference, pp. 1–5. IEEE, Hyderabad (2008). doi: 10.1109/TENCON.2008.4766836
  14. 14.
    Leman, H., Marque, C., Gondry, J.: Use of the electrohysterogram signal for characterization of contractions during pregnancy. IEEE Trans. Bio-med. Eng. 46(10), 1222–1229 (1999)CrossRefGoogle Scholar
  15. 15.
    Ling, S.H., Leung, F.H.F., Leung, K.F., Lam, H.K., Iu, H.H.C.: An improved GA based modified dynamic neural network for cantonese-digit speech recognition. In: Grimm, M., Korschel, K. (eds.) Robust Speech Recognition and Understanding, p. 460. I-Tech, Vienna (2007)Google Scholar
  16. 16.
    Liu, B., Wang, M., Yu, H., Yu, L., Liu, Z.: Study of feature classification methods in BCI based on neural networks. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, vol. 3, pp. 2932–2935. China (2005). doi: 10.1109/IEMBS.2005.1617088
  17. 17.
    Makarov, V.A., Song, Y., Velarde, M.G., Hübner, D., Cruse, H.: Elements for a general memory structure: properties of recurrent neural networks used to form situation models. Biol. Cybern. 98(5), 371–395 (2008). doi: 10.1007/s00422-008-0221-5 zbMATHCrossRefGoogle Scholar
  18. 18.
    Marshall, J.: Regulation of activity in uterine smooth muscle. Physiol. Rev. Suppl. (1962)Google Scholar
  19. 19.
    Petrosian, A.A., Prokhorov, D.V., Schiffer, R.B.: Recurrent neural network based approach for early recognition of alzheimer ’ s disease in EEG. Clin. Neurophysiol. 112(8), 1378–1387 (2001)CrossRefGoogle Scholar
  20. 20.
    Physionet: Physionet (2011).

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Abir Jaafar Hussain
    • 1
  • Paul Fergus
    • 1
  • Dhiya Al-Jumeily
    • 1
  • Haya Alaskar
    • 2
  • Naeem Radi
    • 3
  1. 1.Liverpool John Moores UniversityLiverpoolUK
  2. 2.Department of Computer ScienceSalman Bin Abdulaziz UniversityAl-KharjSaudi Arabia
  3. 3.Al-Khawarizmi International CollegeAbu DhabiUAE

Personalised recommendations