Semantic Role Labeling for Biomedical Corpus Using Maximum Entropy Classifier

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9227)


Semantic role labeling (SRL) is a natural language processing (NLP) task that finds shallow semantic representations from sentences. In this paper, we construct a biomedical proposition bank and train a biomedical semantic role labeling system that can be used to facilitate relation extraction and information retrieval in biomedical domain. Firstly, we construct a proposition bank on the basis of the GENIA TreeBank following the Penn PropBank annotation. Secondly, we use GenPropBank to train a biomedical SRL system, which uses maximum entropy as a classifier. Our experimental results show that a newswire SRL system that achieves an F1 of 85.56 % in the newswire domain can only maintain an F1 of 65.43 % when ported to the biomedical domain. By using our annotated biomedical corpus, we can increase that F1 by 19.2 %.


Semantic role labeling Dependency parsing Maximum entropy Biomedical corpus 


  1. 1.
    Dahlmeier, D., Ng, H.T.: Domain adaptation for semantic role labeling in the biomedical domain. Bioinformatics 26, 1098–1104 (2010)MATHCrossRefGoogle Scholar
  2. 2.
    Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Comput. Linguist. 28(3), 245–288 (2002)CrossRefGoogle Scholar
  3. 3.
    Gildea, D., Palmer, M.: The necessity of syntactic parsing for predicate argument recognition. In: Proceedings of ACL 2002, pp. 239–246 (2002)Google Scholar
  4. 4.
    Gormley, M.R., Mitchell, M., Durme, B.V., et al.: Low-resource semantic role labeling. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 1177–1187 (2014)Google Scholar
  5. 5.
    Liu, T., Che, W.X., Li, S.: Semantic role labeling system using maximum entropy classifier. In: Proceedings of CoNLL 2005, pp. 189–192 (2005)Google Scholar
  6. 6.
    Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a large annotated corpus of English: the Penn Treebank. Comput. Linguist. 19, 313–330 (1993)Google Scholar
  7. 7.
    Morarescu, P., Bejan, C., Harabagiu, S.: Shallow semantics for relation extraction. In: Proceedings of IJCAI 2005 (2005)Google Scholar
  8. 8.
    Palmer, M., Gildea, D., Kingsbury, P.: The Proposition bank: an annotated corpus of semantic roles. Comput. Linguist. 31(1), 71–106 (2005)CrossRefGoogle Scholar
  9. 9.
    Pradhan, S., Ward, W., Martin, J.H.: Towards robust semantic role labeling. Comput. Linguist. 34(2), 289–310 (2008)CrossRefGoogle Scholar
  10. 10.
    Pradhan, S., Hacioglu, K., Krugler, V., et al.: Support vector learning for semantic argument classification. Mach. Learn. J. 60(3), 11–39 (2005)MATHCrossRefGoogle Scholar
  11. 11.
    Tateisi, Y., Yakushiji, A., Ohta, T., Tsujii, J.: Syntax annotation for the GENIA corpus. In: Proceedings of the 2nd International Joint Conference on Natural Language Processing (IJCNLP-2005) (2005)Google Scholar
  12. 12.
    Tsai, R.T., Chou, W.C., Lin, Y.C., et al.: BIOSMILE: a semantic role labeling system for biomedical verbs using a maximum-entropy model with automatically generated template features. BMC Bioinformatics 8, 325 (2007)CrossRefGoogle Scholar
  13. 13.
    Tsai, R.T., Lai, P.T.: A resource-saving collective approach to biomedical semantic role labeling. BMC Bioinformatics 15, 160 (2014)CrossRefGoogle Scholar
  14. 14.
    Xue, N., Palmer, M.: Calibrating features for semantic role labeling. In: Proceedings of the EMNLP 2004, pp. 88–94 (2004)Google Scholar
  15. 15.
    Xue, N., Palmer, M.: Automatic semantic role labeling for chinese verbs. In: Proceedings of IJCAI2005, Edinburgh, UK, pp. 1160–1165 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer ScienceWuhan UniversityWuhanChina

Personalised recommendations