Computational Ecosystems in Evolutionary Art, and Their Potential for the Future of Virtual Worlds

  • Rui Filipe Antunes
  • Frederic Fol Leymarie
  • William Latham
Part of the Progress in IS book series (PROIS)


In this chapter we look in detail at digital artworks which employ a technique from Artificial Life (ALife) called Computational Ecosystems (CEs). These are systems where digital agents are organized in a hierarchical structure (of a food chain) and trade symbolic units (energy and biomass) as a way of promoting community dynamics. We analyze a set of forty (40) CEs communicating works created in the past two decades. We classify these according to an adapted taxonomy. Then, we proceed to a study of cumulative analysis to delineate common patterns and characteristics that can help analyse this area of creativity and knowledge. We conclude discussing the diversity and heterogeneity of the practice and then suggest how CEs, in the context of virtual worlds, could be used as powerful generative multimedia tools, helpful in building bio-mimicking ecosystems as well as in the animation of non-player characters (NPCs) with human-like behaviors.


Virtual World Virtual Water Artificial Life Artificial Evolution Exterior Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aarseth, E. (1997). Cybertext: Perspectives on ergodic literature. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
  2. Al-Rifaie, M., & Bishop, M. (2013). Swarmic sketches deploy attention mechanism. In P. Machado, J. McDermott, & A. Carballal (Eds.), Proceedings of the Second International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Evomusart 2013 (Vol. 7834, pp. 85–96). Heidelberg: Springer.Google Scholar
  3. Annunziato, M. (1998). The Nagual experiment. In Proceedings of the First International Conference on Generative Art (pp. 241–250).Google Scholar
  4. Annunziato, M., & Pierucci, P. (2000). Towards artificial societies. In Proceedings of the Third International Conference on Generative Art.Google Scholar
  5. Antunes, R. F. (2012). Where is Lourenço Marques? A mosaic of voices in a 3D virtual world. Leonardo Electronic Almanac (Touch and Go), 18(3), 114–121.Google Scholar
  6. Antunes, R. (2014). On computational ecosystems in media arts. PhD thesis, Goldsmiths College, University of London.Google Scholar
  7. Antunes, R. F., & Leymarie, F. F. (2008). xTNZ-an evolutionary three-dimensional ecosystem. In A. Barbosa (Ed.), Proceedings of the Fourth International Conference on Digital Arts, Artech2008 (pp. 201–204).Google Scholar
  8. Antunes, R. F., & Leymarie, F. F. (2010). Epigenetics as aesthetic instrument in a generative virtual ecosystem. In L. Valbom (Ed.), Proceedings of the Fifth International Conference on Digital Art Artech 2010 (pp. 172–176).Google Scholar
  9. Antunes, R. F., & Leymarie, F. F. (2012). Generative choreography: Animating in real time dancing avatars. In P. Machado, J. Romero, & A. Carballal (Eds.), Proceedings of the First International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, Evomusart 2012 (pp. 1–10).Google Scholar
  10. Antunes, R. F., & Leymarie, F. F. (2013). Real-time behavioral animation of humanoid non-player characters with a computational ecosystem. In R. A. et al. (Ed.), 13th Conference on Intelligent Virtual Agents (iva 2013), lnai 8108 (pp. 382–395). Heidelberg:Springer.Google Scholar
  11. Arts, E. (2009). Second life masterpieces—Starax Statosky: Second Life Giotto. Retrieved from
  12. Bentley, P., & Corne, D. (2002). Creative evolutionary systems. San Diego, CA: Academic.Google Scholar
  13. Berry, R., Rungsarityotin, W., & Dorin, A. (2001). Unfinished symphonies—songs of 3 1\2 worlds. In B. et al (Ed.), Ecal 2001 artificial life models for musical applications (pp. 51–64). KonferensbidragGoogle Scholar
  14. Bisig, D., & Unemi, T. (2010). Cycles—blending natural and artificial properties in a generative artwork. In Proceedings of the xiii Generative Art Conference. Milano, Italy (pp. 140–154). Retrieved from
  15. Boden, M. A., & Edmonds, E. A. (2009). What is generative art? Digital Creativity, 20(1 & 2), 21–46.CrossRefGoogle Scholar
  16. Bornhofen, S., Heudin, J., Lioret, A., & Torrel, J. (Eds.). (2012). Virtual worlds: Artificial ecosystems and digital art exploration. Paris: Science ebooks.Google Scholar
  17. Bornhofen, S., Gardeux, V., & Machizaud, A. (2012). From swarm art toward ecosystem art. International Journal of Swarm Intelligence Research, 3(3), 18.CrossRefGoogle Scholar
  18. Bown, O., & McCormack, J. (2010). Taming nature: Tapping the creative potential of ecosystem models in the arts. Digital Creativity, 21(4), 215–231.CrossRefGoogle Scholar
  19. Brown, R., Aleksander, I., MacKenzie, J., & Faith, J. (2001). Biotica: Art, emergence and artificial life. London: Art Books International.Google Scholar
  20. Carvalhais, M. (2010). Towards a model for artificial aesthetics. In Proceedings of ga2010—xiii Generative Art Conference. Google Scholar
  21. Chen, C.-Y., & Hoyami, J.-C. (2007). Autonomous systems for interactive digital art. In Tenth Generative Art Conference ga2007. Google Scholar
  22. Dahlstedt, P., & Nordahl, M. G. (2001, June). Living melodies: Coevolution of sonic communication 34(3)Google Scholar
  23. Damer, B., Marcelo, K., Revi, F., Furmanski, T., & Laurel, C. (2005). Nerve garden: Germinating biological metaphors in net-based virtual worlds. In A. Adamatzky & M. Komosinski (Eds.), Artificial life models in software (pp. 67–80). London: Springer.CrossRefGoogle Scholar
  24. Demos, T. J. (2012, April). Art after nature. Artforum, pp. 191–198.Google Scholar
  25. Dorin, A. (2003). Meniscus—exhibited at the Experimenta House of Tomorrow. Retrieved 5 Sept—3 Oct 2003, from aland/meniscus.html
  26. Dorin, A. (2005). Artificial life, death and epidemics in evolutionary, generative electronic art. In F. Rothlauf et al. (Ed.), Proceedings of the Third European Workshop on Evolutionary Music and Art, Applications of Evolutionary Computing: Evoworkshops (pp. 448–457). Berlin, Heidelberg: Springer.Google Scholar
  27. Dorin, A. (2006). Plague, exhibited at Satellite, Australian Pavillion, for Shanghai Bienalle. Retrieved September 3–27, 2006, from
  28. Dorin, A. (2009a). Constellation—exhibited at Biotope, Cube 37 Gallery, Frankston, Victoria, Australia. Curated by CEMA. Retrieved 13 July–9 August, from
  29. Dorin, A. (2009b). Habitat: Engineering in a simulated audible ecosystem. In M. Giacobini et al. (Eds.), Applications of evolutionary computing (Vol. 5484, pp. 488–497). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  30. Dorin, A. (2012). Pandemic—generative software installation, Exhibited: Bouillants 4, Vern-sur-Seiche, Brittany, France, Gaetan Allin and Laurent Dupuis (artistic directors), 22 April–20 MayGoogle Scholar
  31. Driessens and Verstappen. (2006). E-volver—exhibited at the new Onderzoeksgebouw (research building) of the Leiden University Medical Center, in Amsterdam, from
  32. Eldridge, A., & Dorin, A. (2009). Filterscape: Energy recycling in a creative ecosystem. In M. Gia-cobini (Ed.), Proceeding of Evoworkshops’09 Proceedings of the Evoworkshops 2009 on Applications of Evolutionary Computing (pp. 508–517). Heidelberg: Springer.Google Scholar
  33. Eldridge, A., Dorin, A., & McCormack, J. (2008). Manipulating artificial ecosystems. In M. Giacobini et al. (Eds.), Applications of evolutionary computing (Vol. 4974, pp. 392–401). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  34. Heudin, J.-C. (2012). Lifedrop: A drop of life on the web. In S. Bornhofen, J. Heudin, A. Lioret, & J. Torrel (Eds.), Virtual worlds: Artificial ecosystems and digital art exploration (pp. 79–98). Paris: Science ebooks.Google Scholar
  35. Hutzler, G., Gortais, B., & Drogoul, A. (2000). The garden of chances: A visual ecosystem. Leonardo, 33, 101–106. MIT Press Journals.CrossRefGoogle Scholar
  36. Ji, H. (2012). Artificial natures: Creating nature-like aesthetic experiences through immersive artificial life worlds. Ph.D. Dissertation, University of California, Santa Barbara.Google Scholar
  37. Ji, H., & Wakefield, G. (2012). Virtual world-making in an interactive art installation: Time of doubles. In S. Bornhofen, J. Heudin, A. Lioret, & J. Torrel (Eds.), Virtual worlds: Artificial ecosystems and digital art exploration (pp. 53–70). Paris: Science ebooks.Google Scholar
  38. Kowaliw, T., McCormack, J., & Dorin, A. (2011, April). An interactive electronic art system based on artificial ecosystemics. In 2011 I.E. Symposium on Artificial life (alife) (pp. 162–169). doi:  10.1109/AL-IFE.2011.5954645
  39. Krauss, R. E. (2011). Under blue cup. Cambridge, MA: MIT Press.Google Scholar
  40. Lambert, N., Latham, W., & Leymarie, F. F. (2013). The emergence and growth of evolutionary art 1980–1993. Leonardo, 46(4), 367–375.CrossRefGoogle Scholar
  41. Latham, W. (1989). Form synth: The rule-based evolution of complex forms from geometric primitives. In J. Lansdown & R. A. Earnshaw (Eds.), Computers in art, design and animation (pp. 80–108). New York: Springer.CrossRefGoogle Scholar
  42. Lenton, T. M., & Lovelock, J. E. (2001). Daisyworld revisited: Quantifying biological effects on planetary self-regulation. Tellus B, 53(3), 288–305.CrossRefADSGoogle Scholar
  43. Lioret, A. (2012). Artificial life creation for cinema. In S. Bornhofen, J. Heudin, A. Lioret, & J. Torrel (Eds.), Virtual worlds: Artificial ecosystems and digital art exploration (pp. 23–38). Paris: Science ebooks.Google Scholar
  44. McCormack, J. (1994). TURBULENCE an interactive installation exploring artificial life. In Visual Proceedings of ACM Siggraph 94 (pp. 182–183). Orlando, FL: Academic PressGoogle Scholar
  45. McCormack, J. (2001). Eden: An evolutionary sonic ecosystem. In J. Sosik & P. Kelemen (Eds.), Lecture notes in artificial intelligence (Vol. 2159, advances in artificial life, pp. 133–142). Berlin: Springer.Google Scholar
  46. Mccormack, J. (2005). Open problems in evolutionary music and art. In F. Rothlauf et al. (Eds.), Applications of evolutionary computing, (evomusart 2005) (pp. 428–436). Berlin: Springer.Google Scholar
  47. McCormack, J. (2012). CodeForm, Virtual Ecosystem of Artificial Life, Commission for the Ars Electronica Museum, Linz, Austria, from
  48. McCormack, J., & Bown, O. (2009). Life’s what you make: Niche construction and evolutionary art. In M. Giacobini et al. (Eds.), EvoWorkshops (LNCS 5484, pp. 528–537). Berlin: Springer.Google Scholar
  49. Mitchell, J. D., & Lovell, R. E. (1995). Environment for the interactive design of emergent art. In Isea 95: Sixth international symposium on electronic arts (pp. 17–21). Montreal, CanadaGoogle Scholar
  50. Portway, J., Autogena, L., Hoile, C., & Riley, T. (2004). Black shoals: Stock Market Planetarium, from
  51. Prophet, J. (1996). Sublime ecologies and artistic endeavors: Artificial life and interactivity in the online project “TechnoSphere”. Leonardo, 29(5), 339–344. Retrieved from Scholar
  52. Railsback, S. F., & Grimm, V. (2011). Agent-based and individual-based modeling: A practical introduction. Princeton, NJ: Princeton University Press.Google Scholar
  53. Ray, T. S. (1995). An evolutionary approach to synthetic biology: Zen and the art of creating life. Artificial Life 1(1/2): 179–209. In C. G. Langton (Ed.), Artificial life, an overview (pp. 179–209). The MIT Press.Google Scholar
  54. Romero, J., & Machado, P. (Eds.). (2007). The art of artificial evolution: A handbook on evolutionary art and music. Berlin: Springer.Google Scholar
  55. Saruwatari, T., Toqunaga, Y., & Hoshino, T. (1994). ADIVERSITY: Stepping up trophic levels. In R. A. Brooks & P. Maes (Eds.), Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems (pp. 424–429).Google Scholar
  56. Sommerer, C., & Mignonneau, L. (1994). A-Volve: A real-time interactive environment. In ACM Siggraph Visual Proceedings (pp. 172–173).Google Scholar
  57. Sommerer, C., & Mignonneau, L. (2000). Life Spacies II. In G. Stocker & C. Schöpf (Eds.), Ars Electronica 2000 Next Sex (p. 392). Vienna, New York: Springer.Google Scholar
  58. Sommerer, C., Mignonneau, L., & Lopez-Gulliver, R. (2001). IKI-IKI Phone—A multiuser Alife art game for mobile phones. In IEEEE International Conference on Multimedia and Expo (ICME), Tokyo, Japan (pp. 152–155).Google Scholar
  59. Spinster, A. (2007). Exhibited at down to Earth, Oxford House Art (Oh! Art), from
  60. Todd, S., & Latham, W. (1992). Evolutionary art and computers. San Diego, CA: Academic Press.zbMATHGoogle Scholar
  61. Ventrella, J. (2005). GenePool: Exploring the interaction between natural selection and sexual selection. In A. Adamatzky & M. Komosinski (Eds.), Artificial life models in software (pp. 81–96). Berlin: Springer. Retrieved from Scholar
  62. Wakefield, G. (2012). Real-time meta-programming for open-ended computational arts. Ph.D. Dissertation, University of California, Santa Barbara.Google Scholar
  63. Wakefield, G., & Ji, H. (2009). Artificial nature: Immersive world making. In R. A. Brooks & P. Maes (Eds.), Applications of evolutionary computing (Lncs 5484, pp. 377–381). Berlin: Springer.Google Scholar
  64. Watson, T., & Gobeille, E. (2007). Exhibited at DigiPlaySpace, from
  65. Watson, A. J., & Lovelock, J. E. (1983). Biological homeostasis of the global environment: The parable of Daisyworld. Tellus B, 35(4), 286–289.CrossRefADSGoogle Scholar
  66. Whitelaw, M. (2004). Metacreation: Art and artificial life. Cambridge, MA: MIT Press.Google Scholar
  67. Yaeger, L. (1994). Computational genetics, physiology, metabolism, neural systems, learning, vision, and behavior on Polyworld: Life in a new context. In C. Langton (Ed.), Artificial life III, Santa Fe Institute Studies in the Sciences of Complexity (Vol. xvii, pp. 263–298). Reading, MA: Addison-Wesley.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rui Filipe Antunes
    • 1
    • 2
  • Frederic Fol Leymarie
    • 3
  • William Latham
    • 3
  1. 1.BioISI, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.MIRALabUniversité de GenèveGenevaSwitzerland
  3. 3.Goldsmiths, University of LondonLondonUK

Personalised recommendations