Bacterial Communities Associated with Junco Preen Glands: Preliminary Ramifications for Chemical Signaling

Abstract

Intraspecific chemical communication may play a significant role in avian behavior. Preen oil secreted by the uropygial gland emits volatile compounds that vary with many aspects of bird biology and may figure prominently in mate choice. Many of these compounds are known end products of bacterial metabolism in other environments. The fermentation hypothesis for chemical recognition suggests that symbiotic bacteria in mammalian scent glands produce volatile odorants that are used as recognition cues by the host animals and that variation in these bacterial communities contributes to variation in the animal scents. We preliminarily evaluated whether this hypothesis could apply to birds by sampling and sequencing bacterial communities associated with the preen gland of adult breeding dark-eyed juncos (Junco hyemalis). The most common operational taxonomic units (OTUs), defined by the V4 region of the 16S rRNA gene, belonged to the phyla Actinobacteria, Firmicutes, and Proteobacteria. Most of the identified bacterial genera contain species that are known odor producers. Most notably, Burkholderia and Pseudomonas species consistently produce 9 of the 17 volatile compounds whose production is either upregulated during the breeding season or differs between the sexes in juncos. Other genera have documented antifungal or antibacterial properties and may provide other valuable services to the birds. We found no effect of host sex on bacterial community composition or structure. Instead, paired males and females clustered together, suggesting that individuals that have frequent contact may develop similar microbial communities quickly. Our study suggests that the fermentation hypothesis for chemical recognition, originally formulated for mammals, may apply to birds as well, opening new pathways for avian-microbial research.

References

  1. Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78CrossRefPubMedGoogle Scholar
  2. Albone ES, Eglinton G, Walker JM, Ware GC (1974) The anal sac secretion of the red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci 14:387–400CrossRefPubMedGoogle Scholar
  3. Amo L, López-Rull I, Pagán I, Macías Garcia C (2012) Male quality and conspecific scent preferences in the house finch, Carpodacus mexicanus. Anim Behav 84:1483–1489CrossRefGoogle Scholar
  4. Anderson M (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  5. Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436CrossRefGoogle Scholar
  6. Balkwill DL, Fredrickson JK, Romine MF (2006) Sphingomonas and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 605–629CrossRefGoogle Scholar
  7. Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13:3047–3058CrossRefPubMedGoogle Scholar
  8. Bonadonna F, Bretagnolle V (2002) Smelling home: a good solution for burrow-finding in nocturnal petrels? J Exp Biol 205:2519–2523PubMedGoogle Scholar
  9. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522PubMedCentralCrossRefPubMedGoogle Scholar
  10. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624PubMedCentralCrossRefPubMedGoogle Scholar
  11. Caro SP, Balthazart J (2010) Pheromones in birds: myth or reality? J Comp Physiol A 196:751–766CrossRefGoogle Scholar
  12. Caspers BA, Krause ET (2010) Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biol Lett 7:184–186PubMedCentralCrossRefPubMedGoogle Scholar
  13. Claesson MJ, O’Sullivan O, Wang Q, Nikkilä J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4(8):e6669PubMedCentralCrossRefPubMedGoogle Scholar
  14. Ezaki T, Li N, Kawamura Y (2006) The anaerobic gram-positive cocci. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 795–808CrossRefGoogle Scholar
  15. Ezenwa VO, Williams AE (2014) Microbes and animal olfactory communication: where do we go from here? Bioessays 36:847–854CrossRefPubMedGoogle Scholar
  16. Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964CrossRefGoogle Scholar
  17. Filipiak W, Sponring A, Baur MM, Filipiak A, Ager C, Wiesnhofer H, Nagl M, Troppmair J, Amann A (2012) Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol 12:113PubMedCentralCrossRefPubMedGoogle Scholar
  18. Gerlach NM, McGlothlin JW, Parker PG, Ketterson ED (2012) Promiscuous mating produces offspring with higher lifetime fitness. Proc R Soc B 279:860–866PubMedCentralCrossRefPubMedGoogle Scholar
  19. Giraudeau M, Duval C, Guillon N, Bretagnolle V, Gutierrez C, Heeb P (2010) Effects of access to preen gland secretions on mallard plumage. Naturwissenschaften 97:577–581CrossRefPubMedGoogle Scholar
  20. Gorman ML, Nedwell DB, Smith RM (1974) An analysis of the contents of the anal and scent pockets of Herpestes auropunctatus (Carnivora: Viverridae). J Zool 172:389–399CrossRefGoogle Scholar
  21. Green PN (2006) Methylobacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 257–265CrossRefGoogle Scholar
  22. Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schultz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906CrossRefPubMedGoogle Scholar
  23. Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  24. Hagelin JC, Jones IL, Rasmussen LEL (2003) A tangerine-scented social odour in a monogamous seabird. Proc R Soc B 270:1323–1329PubMedCentralCrossRefPubMedGoogle Scholar
  25. Hammer O (2011) PAST: PAleontological STatistics manual, 2.07 edn. Natural History Museum, Oslo, NorwayGoogle Scholar
  26. Hammer O, Harper DAT, Ryan PD (2001) PAST: PAleontological STatistics software package for education and data analysis. Palaeontol Electron 4:1–9Google Scholar
  27. Jacob JP, Ziswiler V (1982) The uropygial gland. In: Farner DS, King JR, Parkes KC (eds) Avian biology, vol 6. Academic, New York, pp 199–324CrossRefGoogle Scholar
  28. Jones D, Keddie RM (2006) The genus Arthrobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 945–960CrossRefGoogle Scholar
  29. Ketterson ED, Parker PG, Raouf SA, Nolan V Jr, Ziegenfus C, Chandler CR (1997) The relative impact of extra-pair fertilizations on variation in male and female reproductive success in dark-eyed juncos (Junco hyemalis). Ornithol Monogr 1997:81–101Google Scholar
  30. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120PubMedCentralCrossRefPubMedGoogle Scholar
  31. Kulkarni S, Heeb P (2007) Social and sexual behaviours aid transmission of bacteria in birds. Behav Proc 74:88–92CrossRefGoogle Scholar
  32. Latorre-Moratalla ML, Bosche-Fusté J, Bover-Cid S, Aymerich T, Vidal-Carou MC (2011) Contribution of enterococci to the volatile profile of slightly-fermented sausages. LWT Food Sci Technol 44:145–152CrossRefGoogle Scholar
  33. Law-Brown J, Meyers PR (2003) Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the red-billed woodhoopoe, Phoeniculus purpureus. Int J Syst Evol Microbiol 53:683–685CrossRefPubMedGoogle Scholar
  34. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Urselll LK, Vázquez-Baeza Y, Van Treuren W, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052PubMedCentralCrossRefPubMedGoogle Scholar
  35. Leclaire S, Merkling T, Raynaud C, Mulard H, Bessière J-M, Lhuillier É, Hatch SA, Danchin É (2012) Semiochemical compounds of preen secretion reflect genetic make-up in a seabird species. Proc R Soc B 279:1185–1193PubMedCentralCrossRefPubMedGoogle Scholar
  36. Leclaire S, Nielsen JF, Drea CM (2014) Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol 25:996–1004CrossRefGoogle Scholar
  37. Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42(1):D744–D748PubMedCentralCrossRefPubMedGoogle Scholar
  38. López del Castillo-Lozano M, Mansour S, Tåche R, Bonnarme P, Landaud S (2008) The effect of cysteine on production of volatile sulphur compounds by cheese-ripening bacteria. Int J Food Microbiol 122:321–327CrossRefPubMedGoogle Scholar
  39. Madigan MT, Martinko JM, Stahl DA, Clark DP (2010) Brock biology of microorganisms, 13th edn. Benjamin Cummings, San FranciscoGoogle Scholar
  40. Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3:144–156CrossRefPubMedGoogle Scholar
  41. Mardon J, Saunders SM, Anderson MJ, Couchoux C, Bonadonna F (2010) Species, gender, and identity: cracking petrels’ sociochemical code. Chem Senses 35:309–321CrossRefPubMedGoogle Scholar
  42. Martín-Vivaldi M, Ruiz-Rodríguez M, Soler JJ, Peralta-Sánchez JM, Méndez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M (2009) Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: evidence for a role of bacteria. J Avian Biol 40:191–205CrossRefGoogle Scholar
  43. Martín-Vivaldi M, Peña A, Peralta-Sánchez JM, Sánchez L, Ananou S, Ruiz-Rodríguez M, Soler JJ (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc R Soc B 277:123–130PubMedCentralCrossRefPubMedGoogle Scholar
  44. Moyer BR, Rock AN, Clayton DH (2003) Experimental test of the importance of preen oil in rock doves (Columba livia). Auk 120:490–496CrossRefGoogle Scholar
  45. Nolan V Jr, Ketterson ED, Cristol DA, Rogers CM, Clotfelter ED, Titus R, Schoech SJ, Snajdr E (2002) Dark-eyed junco (Junco hyemalis), vol 716, The birds of North America. The Birds of North America, Inc., Philadelphia, PAGoogle Scholar
  46. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160PubMedCentralCrossRefPubMedGoogle Scholar
  47. Roze U, Leung KT, Nix E, Burton G, Chapman DM (2010) Microanatomy and bacterial flora of the perineal glands of the North American porcupine. Can J Zool 88:59–68CrossRefGoogle Scholar
  48. Saag P, Tilgar V, Mänd R, Kilgas P, Mägi M (2011) Plumage bacterial assemblages in a breeding wild passerine: relationships with ecological factors and body condition. Microbiol Ecol 61:740–749CrossRefGoogle Scholar
  49. Saranathan V, Burtt EH (2007) Sunlight on feathers inhibits feather-degrading bacteria. Wilson J Ornithol 119:239–245CrossRefGoogle Scholar
  50. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541PubMedCentralCrossRefPubMedGoogle Scholar
  51. Shaw CL, Rutter JE, Austin AL, Garvin MC, Whelan RJ (2011) Volatile and semivolatile compounds in gray catbird uropygial secretions vary with age and between breeding and wintering grounds. J Chem Ecol 37:329–339CrossRefPubMedGoogle Scholar
  52. Shawkey MD, Pillai SR, Hill GE (2003) Chemical warfare? Effects of uropygial oil on feather-degrading bacteria. J Avian Biol 34:345–349CrossRefGoogle Scholar
  53. Shawkey MD, Mills KL, Dale C, Hill GE (2005) Microbial diversity of wild bird feathers revealed through culture-based and culture-independent techniques. Microbiol Ecol 50:40–47CrossRefGoogle Scholar
  54. Shawkey MD, Hussain J, Hagelin JC, Vollmer AC, Hill GE (2006) Use of culture-independent methods to compare bacterial assemblages on feathers of crested and least auklets (Aethia cristatella and Aethia pusilla) with those of passerines. Waterbirds 29:507–510CrossRefGoogle Scholar
  55. Sheneman L, Evans J, Foster JA (2006) Clearcut: a fast implementation of relaxed neighbor joining. Bioinformatics 22:2823–2824CrossRefPubMedGoogle Scholar
  56. Sin YW, Buesching CD, Burke T, MacDonald DW (2012) Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 81:648–659CrossRefPubMedGoogle Scholar
  57. Soini HA, Schrock SE, Bruce KE, Wiesler D, Ketterson ED, Novotny MV (2007) Seasonal variation in volatile compound profiles of preen gland secretions of the dark-eyed junco (Junco hyemalis). J Chem Ecol 33:183–198CrossRefPubMedGoogle Scholar
  58. Soini HA, Whittaker DJ, Wiesler D, Ketterson ED, Novotny M (2013) Chemosignaling diversity in songbirds: chromatographic profiling of preen oil volatiles in different species. J Chromatogr A 1317:186–192CrossRefPubMedGoogle Scholar
  59. Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M, Valdivia E, Martín-Platero AM, Martínez-Bueno M, Peralta-Sánchez JM, Méndez M (2008) Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol 22:864–871CrossRefGoogle Scholar
  60. Soler JJ, Martín-Vivaldi M, Peralta-Sánchez JM, Ruiz-Rodríguez M (2010) Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol J 3:93–100CrossRefGoogle Scholar
  61. Song SJ, Lauber CL, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458PubMedCentralPubMedGoogle Scholar
  62. Spraker JE, Jewell K, Roze LV, Scherf J, Ndagano D, Beaudry R, Linz JE, Allen C, Keller NP (2014) A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia solanacearum and Aspergillus flavus. J Chem Ecol 40:502–513CrossRefPubMedGoogle Scholar
  63. Theis KR, Schmidt TM, Holekamp KE (2012) Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep 2:615PubMedCentralCrossRefPubMedGoogle Scholar
  64. Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Schmidt TM, Holekamp KE (2013) Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–19837PubMedCentralCrossRefPubMedGoogle Scholar
  65. Towner K (2006) The genus Acinetobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 746–758CrossRefGoogle Scholar
  66. Voigt C, Caspers B, Speck S (2005) Bats, bacteria, and bat smell: sex-specific diversity of microbes in a sexually selected scent organ. J Mammal 86:745–749CrossRefGoogle Scholar
  67. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267PubMedCentralCrossRefPubMedGoogle Scholar
  68. Whittaker DJ, Reichard DG, Dapper AL, Ketterson ED (2009) Behavioral responses of nesting female dark-eyed juncos Junco hyemalis to hetero- and conspecific passerine preen oils. J Avian Biol 40:579–583CrossRefGoogle Scholar
  69. Whittaker DJ, Soini HA, Atwell JW, Hollars C, Novotny MV, Ketterson ED (2010) Songbird chemosignals: volatile compounds in preen gland secretions vary among individuals, sexes, and populations. Behav Ecol 21:608–614PubMedCentralCrossRefPubMedGoogle Scholar
  70. Whittaker DJ, Richmond KM, Miller AK, Kiley R, Bergeon Burns C, Atwell JW, Ketterson ED (2011a) Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behav Ecol 22:1256–1263CrossRefGoogle Scholar
  71. Whittaker DJ, Soini HA, Gerlach NM, Posto AL, Novotny MV, Ketterson ED (2011b) Role of testosterone in stimulating seasonal changes in a potential avian chemosignal. J Chem Ecol 37:1349–1357CrossRefPubMedGoogle Scholar
  72. Whittaker DJ, Gerlach NM, Soini HA, Novotny MV (2013) Bird odour predicts reproductive success. Anim Behav 86:697–703CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.BEACON Center for the Study of Evolution in ActionMichigan State UniversityEast LansingUSA
  2. 2.Department of ZoologyMichigan State UniversityEast LansingUSA

Personalised recommendations