Fetal Auditory Processing: Implications for Language Development?



Fundamental auditory processing abilities such as attention to, discrimination, recognition, and learning of sounds are critical properties of early neurocognitive function, necessary for the acquisition of language, detection of possible opportunity, and identification of impending danger. Over the past 35 years, researchers have characterized auditory processing in human fetuses, occasionally at mid-gestation and reliably from the beginning of the third trimester of pregnancy. Study results demonstrate that fetal gestational age, state of arousal, maternal (e.g., diabetes, hypertension, preeclampsia) and fetal (e.g., growth restriction) high-risk conditions as well as sound frequency, intensity, complexity, and duration influence perception. The finding of differential responding to sounds in fetuses in populations of low- vs. high-risk pregnancies is particularly salient because it has the potential of serving as a marker of neuropathology with one of the most compelling examples the association of atypical response to the mother’s voice in growth restricted fetuses and later expressive language deficits. Future research is essential to a better understanding of the underlying mechanisms responsible for disparities in auditory processing, identifying individual fetuses and newborns at greatest risk for subsequent language deficits, and generating and testing novel prenatal and neonatal interventions to prevent or ameliorate communication impairments.


Human Fetus Audition Perception Sounds Speech Voice Language Heart rate Body movements 


  1. Abrams, R. N., Gerhardt, K. J., & Griffiths, S. K. (1993). Transmission of airborne sound from 50–20,000 Hz into the abdomen of sheep. Journal of Low Frequency Noise and Vibration, 12, 16–24.Google Scholar
  2. Allen, C., & Kisilevsky, B. S. (1999). Fetal behaviour in diabetic and nondiabetic pregnant women. Developmental Psychobiology, 35, 69–80.PubMedCrossRefGoogle Scholar
  3. Al-Qahtani, N. H. (2005). Foetal response to music and voice. Australian and New Zealand Journal of Obstetrics and Gynaecology, 45, 414–417.PubMedCrossRefGoogle Scholar
  4. Barker, D. J. P. (1994). Outcome of low birthweight. Hormone Research, 42(4‐5), 223–230.PubMedCrossRefGoogle Scholar
  5. Barker, D. J. P. (1995). The Wellcome Foundation Lecture, 1994: The fetal origins of adult disease. Proceedings of the Royal Society of London B, 262, 37–43.CrossRefGoogle Scholar
  6. Barker, D. J. P. (1997). Maternal nutrition, fetal nutrition, and disease in later life. Nutrition, 13(9), 807–813.PubMedCrossRefGoogle Scholar
  7. Barker, D. J. P. (2004). The developmental origins of adult disease. Journal of the American College of Nutrition, 23(Suppl 6), 588S–595S.PubMedCrossRefGoogle Scholar
  8. Barker, D. J. P., Bull, A. R., Osmond, C., & Simmonds, S. J. (1990). Fetal and placental size and risk of hypertension in adult life. British Medical Journal, 301, 259–262.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Barker, D. J. P., Gluckman, P. D., Godfrey, K. M., Harding, J. E., Owens, J. A., & Robinson, J. S. (1993). Fetal nutrition and cardiovascular disease in adult life. Lancet, 341, 938–941.PubMedCrossRefGoogle Scholar
  10. Barker, D. J. P., & Thronburg, K. L. (2013). Placental programming of chronic diseases, cancer and lifespan: A review. Placenta, 34, 841–845.PubMedCrossRefGoogle Scholar
  11. Bateson, P., Barker, D. Clutton-Brock, T., Deb, D., D’Udine, B., Foley, R. A., Gluckman, P., …, Sultan, S. E. (2004). Developmental plasticity and human health. Nature, 430, 419–421.Google Scholar
  12. Beitchman, J. H., Wilson, B., Johnson, C. J., Atkinson, L., Young, A., Adlaf, E., et al. (2001). Fourteen-year follow-up of speech/language impaired and control children: Psychiatric outcome. Journal of the American Academy of Child and Adolescent Psychiatry, 40, 75–82.PubMedCrossRefGoogle Scholar
  13. Bench, J. (1968). Sound transmission to the human foetus through the maternal abdominal wall. The Journal of Genetic Psychology, 113, 85–87.PubMedCrossRefGoogle Scholar
  14. Brown, C. A., Lee, C. T., Hains, S. M. J., & Kisilevsky, B. S. (2008). Relation between maternal heart rate variability and fetal behaviour in hypertensive pregnancies. Biological Research for Nursing, 10, 134–144.PubMedCrossRefGoogle Scholar
  15. Cant, N. B. (1998). Structural development of the mammalian auditory pathways. In E. W. Rubel, A. N. Popper, & R. R. Fay (Eds.), Development of the auditory system (pp. 315–411). New York, NY: Springer.CrossRefGoogle Scholar
  16. Chaudhari, S., Bhalerao, M. R., Chitale, A., Pandit, A. N., & Nene, U. (1999). Pune low birth weight study: A six year follow up. Indian Pediatrics, 36, 669–676.PubMedGoogle Scholar
  17. Connor, J. R., & Menzies, S. L. (1996). Relationship of iron to oligodendrocytes and myelination. Glia, 17, 83–93.PubMedCrossRefGoogle Scholar
  18. David, M., Hirsch, M., Karin, J., Toledo, E., & Akselrod, S. (2007). An estimate of foetal autonomic state by time–frequency analysis of foetal heart rate variability. Journal of Applied Physiology, 102, 1057–1064.PubMedCrossRefGoogle Scholar
  19. deUngria, M., Rao, R., Luciana, M., Wobken, J., Nelson, C. A., & Georgieff, M. (2000). Perinatal iron deficiency decreases cytochromec oxidase (CytOx) activity in selective regions of neonatal rat brain. Pediatric Research, 48, 243–255.Google Scholar
  20. DiPietro, J., Caulfield, L. E., Irizarry, R. A., Chen, P., Merialdi, M., & Zavaleta, N. (2006). Prenatal development of intrafetal and maternal–fetal synchrony. Behavioral Neuroscience, 120, 687–701.PubMedCrossRefGoogle Scholar
  21. DiPietro, J. A., Voegtline, K. M., Costigan, K. A., Aguirre, F., Kivlighan, K., & Chen, P. (2013). Physiological reactivity of pregnant women to evoked fetal startle. Journal of Psychosomatic Research, 75, 321–326.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Draganova, R., Eswaran, H., Murphy, P., Huotilainen, M., Lowery, C., & Preissl, H. (2005). Sound frequency change detection in fetuses and newborns: A magnetoencephalographic study. NeuroImage, 28, 354–361.PubMedCrossRefGoogle Scholar
  23. Dwornicka, B., Jasienska, A., Smolarz, W., & Wawryk, R. (1964). Attempt of determining the fetal reaction to acoustic stimulation. Acta Otolaryngologica, 57, 61–64.CrossRefGoogle Scholar
  24. Eggermont, J. J. (2001). Between sound and perception: Reviewing the search for a neural code. Hearing Research, 157, 1–42.PubMedCrossRefGoogle Scholar
  25. Floccia, C., Nazzi, T., & Bertoncini, J. (2000). Unfamiliar voice discrimination for short stimuli in newborns. Developmental Science, 3, 333–343.CrossRefGoogle Scholar
  26. Georgieff, M. K. (2008). The role of iron in neurodevelopment: Fetal iron deficiency and the developing hippocampus. Biochemical Society Transactions, 36, 1267–1271.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gluckman, P. D., & Hanson, M. A. (2004). Living with the past: Evolution, development, and patterns of disease. Science New Series, 305(5691), 1733–1736.Google Scholar
  28. Godfrey, K. M., & Barker, D. J. P. (1995). Maternal nutrition in relation to fetal and placental growth. European Journal of Obstetrics & Gynecology and Reproductive Biology, 61, 15–22.CrossRefGoogle Scholar
  29. Gottlieb, G. (1971). Ontogenesis of sensory function in birds and mammals. In E. Tobach, L. R. Aronson, & E. Shaw (Eds.), The biopsychology of development (pp. 67–128). New York, NY: Academic.Google Scholar
  30. Groome, L. J., Loizou, P. C., Holland, S. B., Smith, L. A., & Hoff, C. (1999). High vagal tone is associated with more efficient regulation of homeostasis in low-risk human fetuses. Developmental Psychobiology, 35, 25–34.PubMedCrossRefGoogle Scholar
  31. Groome, L. J., Mooney, D. M., Holland, S. B., Smith, L. A., Atterbury, J. L., & Dykman, R. A. (1999). Behavioral state affects heart rate response to low-intensity sound in human fetuses. Early Human Development, 54, 39–54.PubMedCrossRefGoogle Scholar
  32. Gutbrod, T., Wolke, D., Soehne, B., Ohrt, B., & Riegel, K. (2000). Effects of gestation and birth weight on the growth and development of very low birthweight small for gestational age infants: A matched group comparison. Archives of Disease in Childhood Fetal & Neonatal Edition, 82, F208–F214.CrossRefGoogle Scholar
  33. Hales, C. N., & Barker, D. J. P. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35, 595–601.PubMedCrossRefGoogle Scholar
  34. Helland, W. A., Biringer, E., Helland, T., & Heimann, M. (2012). Exploring language profiles for children with ADHD and children with Asperger Syndrome. Journal of Attention Disorders, 16, 34–43.PubMedCrossRefGoogle Scholar
  35. Henry, L. A., Messer, D. J., & Nash, G. (2012). Executive functioning in children with specific language impairment. Journal of Child Psychology and Psychiatry, 53, 37–45.PubMedCrossRefGoogle Scholar
  36. Hepper, P. G. (1995). The behaviour of the fetus as an indicator of neural functioning. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal development: A psychobiological perspective (pp. 405–417). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  37. Hepper, P. (2015). Behavior during the prenatal period: Adaptive for development and survival. Child Development Perspectives, 9(1), 38–43.CrossRefGoogle Scholar
  38. Hepper, P. G., Scott, D., & Shahidullah, S. (1993). Newborn and fetal response to maternal voice. Journal of Reproductive and Infant Psychology, 11, 147–153.CrossRefGoogle Scholar
  39. Hepper, P. G., & Shahidullah, S. (1994). The beginnings of mind-evidence from the behaviour of the fetus. Journal of Reproductive and Infant Psychology, 12, 143–154.CrossRefGoogle Scholar
  40. Hofer, M. A. (1988). On the nature and function of prenatal behavior. In W. P. Smotherman & S. R. Robinson (Eds.), Behavior of the fetus (pp. 3–18). Caldwell, NJ: Telford Press.Google Scholar
  41. Hofer, M. A. (1994). Early relationships as regulators of infant physiology and behavior. Acta Paediatrica Supplement, 397, 9–18.CrossRefGoogle Scholar
  42. Hoppenbrouwers, T., Ugarthechea, J. C., Combs, D., Hodgman, J. E., Harper, R. M., & Sterman, M. B. (1978). Studies of maternal-fetal interaction during the last trimester of pregnancy: Ontogenesis of the basic rest-activity cycle. Experimental Neurology, 61, 136–153.PubMedCrossRefGoogle Scholar
  43. Horimoto, N., Koyanagi, T., Maeda, H., Satoh, S., Takashima, T., Minami, T., et al. (1993). Can brain impairment be detected by in utero behavioural patterns? Archives of Diseases of Childhood, 69, 3–8.CrossRefGoogle Scholar
  44. Hutchinson, E., Bavin, E., Efron, D., & Sciberras, E. (2012). A comparison of working memory profiles in school-age children with specific language impairment, attention deficit/hyperactivity disorder, comorbid SLI and ADHD and their typically developing peers. Child Neuropsychology, 18, 190–207.PubMedCrossRefGoogle Scholar
  45. Hykin, J., Moore, R., Duncan, K., Clare, S., Baker, S., Johnson, I., …, Gowland, P. (1999). Fetal brain activity demonstrated by functional magnetic resonance imaging. Lancet, 354, 645–646.Google Scholar
  46. Jardri, R., Houfflin-Debarge, V., Delion, P., Pruvo, J. P., Thomas, P., & Pins, D. (2012). Assessing fetal response to maternal speech using a noninvasive functional brain imaging technique. Intnational Journal of Developmental Neuroscience, 30(2), 159–161.CrossRefGoogle Scholar
  47. Johnson, C. J., Beitchman, J. H., & Brownlie, E. B. (2010). Twenty-year follow-up of children with and without speech-language impairments: Family, educational, occupational, and quality of life outcomes. American Journal of Speech-Language Pathology, 19, 51–65.PubMedCrossRefGoogle Scholar
  48. Jorgenson, L. A., Sun, M., O’Connor, M., & Georgieff, M. K. (2005). Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus, 15, 1094–1102.PubMedCrossRefGoogle Scholar
  49. Jorgenson, L. A., Wobken, J. D., & Georgieff, M. K. (2003). Perinatal iron deficiency alters apical dendritic growth in hippocampal CA1 pyramidal neurons. Developmental Neuroscience, 412–420.Google Scholar
  50. Joseph, R. (2000). Fetal brain behaviour and cognitive development. Developmental Review, 20, 81–98.CrossRefGoogle Scholar
  51. Joshi, G., Wozniak, J., Petty, C., Martello, M. K., Fried, R., Bolfek, A., …, Biederman, J. (2013). Psychiatric comorbidity and functioning in a clinically referred population of adults with autism spectrum disorders: A comparative study. Journal of Autism Developmental Disorders, 43, 1314–1325.Google Scholar
  52. Kiefer, I. D., Siegel, E. R., Preissl, H., Ware, M., Schauf, B., Lowery, C. L., et al. (2008). Delayed maturation of auditory evoked responses in growth-restricted fetuses revealed by magnetoenchephalographic recordings. American Journal of Obstetrics and Gynecology, 199, 503.e1–503.e7.CrossRefGoogle Scholar
  53. Kilby, M. D., Gittoes, N., McCabe, C., Verhaeg, J., & Franklyn, J. A. (2000). Expression of thyroid receptor isoforms in the human fetal central nervous system and the effects of intrauterine growth restriction. Clinical Endocrinology, 53, 469–477.PubMedCrossRefGoogle Scholar
  54. Kilby, M. D., Verhaeg, J., Gittoes, N., Somerset, D. A., Clark, P. M. S., & Franklyn, J. A. (1998). Circulating thyroid hormone concentrations and placental thyroid hormone receptor expression in normal human pregnancy and pregnancy complicated by intrauterine growth restriction (IUGR). Journal of Clinical Endocrinology and Medicine, 83, 2964–2971.CrossRefGoogle Scholar
  55. King, S., & LePlante, D. P. (2015). Using natural disasters to study prenatal maternal stress in humans. In M. C. Antonelli (Ed.), Advances in neurobiology: Perinatal programming of neurodevelopment (Vol. 10, pp. 285–313). New York, NY: Springer.Google Scholar
  56. Kisilevsky, B. S., Chambers, B., Parker, K., & Davies, G. A. L. (2014). Auditory processing in growth restricted fetuses and newborns and later language development. Clinical Psychological Science, 2, 495–513.CrossRefGoogle Scholar
  57. Kisilevsky, B. S., & Davies, G. A. L. (2007). Auditory processing deficits in growth restricted fetuses affect later language development. Medical Hypotheses, 68, 620–628.PubMedCrossRefGoogle Scholar
  58. Kisilevsky, B. S., Dorland, J. E., Swansburg, M. L., Hains, S. M. J., Brown, C. A., & Smith, G. N. (2011). Atypical fetal voice processing in preeclamptic pregnancy. Developmental and Behavioral Pediatrics, 32, 34–40.CrossRefGoogle Scholar
  59. Kisilevsky, B. S., Fearon, I., & Muir, D. W. (1998). Fetuses differentiate vibroacoustic stimuli. Infant Behavior & Development, 21, 25–46.CrossRefGoogle Scholar
  60. Kisilevsky, B. S., Gilmour, A., Stutzman, S. S., Hains, S. M. J., & Brown, C. A. (2012). Atypical fetal response to the mother’s voice in diabetic compared to overweight pregnancies. Developmental and Behavioral Pediatrics, 33, 55–61.CrossRefGoogle Scholar
  61. Kisilevsky, B. S., & Hains, S. M. J. (2005). A comparison of fetal behaviour in low- and high-risk pregnancies. Fetal & Pediatric Pathology, 24, 1–20.CrossRefGoogle Scholar
  62. Kisilevsky, B. S., & Hains, S. M. J. (2011). Onset and maturation of fetal heart rate response to the mother’s voice over late gestation. Developmental Science, 14, 214–223.PubMedCrossRefGoogle Scholar
  63. Kisilevsky, B. S., Hains, S. M. J., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S., …, Wang, Z. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32, 59–71.Google Scholar
  64. Kisilevsky, B. S., Hains, S. M. J., Lee, K., Xie, X., Huang, H., Ye, H. H., …, Wang, Z. (2003). Effects of experience on fetal voice recognition. Psychological Science, 14, 220–224.Google Scholar
  65. Kisilevsky, B. S., Hains, S. M. J., & Low, J. A. (1999a). Differential maturation of fetal responses to vibroacoustic stimulation in a high-risk population. Developmental Science, 2, 234–245.CrossRefGoogle Scholar
  66. Kisilevsky, B. S., Hains, S. M. J., & Low, J. A. (1999b). Maturation of body and breathing movements in 24–33 week-old fetuses threatening to deliver prematurely. Early Human Development, 55, 25–38.PubMedCrossRefGoogle Scholar
  67. Kisilevsky, B. S., Hains, S. M. J., & Low, J. A. (2001). Maturation of fetal heart rate and body movement in 24 to 33 week-old fetuses threatening to deliver prematurely. Developmental Psychobiology, 38, 78–86.PubMedCrossRefGoogle Scholar
  68. Kisilevsky, B. S., & Low, J. A. (1998). Human fetal behavior: 100 years of study. Developmental Review, 18, 1–29.CrossRefGoogle Scholar
  69. Kisilevsky, B. S., & Muir, D. W. (1991). Human fetal and subsequent newborn responses to sound and vibration. Infant Behavior and Development, 14, 1–26.CrossRefGoogle Scholar
  70. Kisilevsky, B. S., Muir, D. W., & Low, J. A. (1989). Human fetal responses to sound as a function of stimulus intensity. Obstetrics and Gynecology, 73, 971–976.PubMedGoogle Scholar
  71. Kisilevsky, B. S., Muir, D. W., & Low, J. A. (1992). Maturation of human fetal responses to vibroacoustic stimulation. Child Development, 63, 1497–1508.PubMedCrossRefGoogle Scholar
  72. Kisilevsky, B., Pang, L. H., & Hains, S. (2000). Maturation of human fetal responses to airborne sound in low-and high-risk fetuses. Early Human Development, 58, 179–195.PubMedCrossRefGoogle Scholar
  73. Kok, J. H., den Ouden, A. L., Verloove-Vanhorick, S. P., & Brand, R. (1998). Outcome of very preterm small for gestational age infants: The first nine years of life. British Journal of Obstetrics & Gynaecology, 105, 162–168.CrossRefGoogle Scholar
  74. Korkman, M., Liikanen, A., & Fellman, V. (1996). Neuropsychological consequences of very low birth weight and asphyxia at term: Follow-up until school age. Journal of Clinical & Experimental Neuropsychology, 18, 220–233.CrossRefGoogle Scholar
  75. Krueger, C. A., Cave, E. C., & Garvan, C. (2015). Fetal response to live and recorded maternal speech. Biological Research for Nursing, 17(1), 112–120.PubMedCrossRefGoogle Scholar
  76. Krueger, C., Parker, L., Chiu, S.-H., & Theriaque, D. (2010). Maternal voice and short-term outcomes in preterm infants. Developmental Psychobiology, 52, 205–212.PubMedPubMedCentralGoogle Scholar
  77. Laplante, D. P., Brunet, A., Schmitz, N., Ciampi, A., & King, S. (2008). Project Ice Storm: Prenatal maternal stress affects cognitive and linguistic functioning in 5½-year-old children. Journal of the American Academy of Child & Adolescent Psychiatry, 47(9), 1063–1072.CrossRefGoogle Scholar
  78. Lecanuet, J.-P., Granier-Deferre, C., Cohen, H., Le Houezec, R., & Busnel, M.-C. (1986). Fetal responses to acoustic stimulation depend on heart rate variability pattern, stimulus intensity, and repetition. Early Human Development, 13, 269–283.PubMedCrossRefGoogle Scholar
  79. Lecanuet, J.-P., Granier-Deferre, C., Jacquet, A.-Y., Capponi, I., & Ledru, L. (1993). Prenatal discrimination of a male and a female voice uttering the same sentence. Early Development and Parenting, 2, 217–228.CrossRefGoogle Scholar
  80. Lecanuet, J.-P., Granier-Deferre, C., & Busnel, M.-C. (1988). Fetal cardiac and motor responses to octave-band noises as a function of central frequency, intensity and heart rate variability. Early Human Development, 18, 81–93.PubMedCrossRefGoogle Scholar
  81. Lecanuet, J.-P., Granier-Deferre, C., & Busnel, M.-C. (1989). Differential fetal auditory reactiveness as a function of stimulus characteristics and state. Seminars in Perinatology, 13, 421–429.PubMedGoogle Scholar
  82. Lecanuet, J.-P., & Schaal, B. (1996). Fetal sensory competencies. European Journal of Obstetrics & Gynecology and Reproductive Biology, 68, 1–23.CrossRefGoogle Scholar
  83. Lee, C. T., Brown, C. A., Hains, S. M. J., & Kisilevsky, B. S. (2007). Fetal development: Voice processing in normotensive and hypertensive pregnancies. Biological Research for Nursing, 8, 272–282.PubMedCrossRefGoogle Scholar
  84. Lee, G. Y. C., & Kisilevsky, B. S. (2014). Fetuses respond to father’s voice but prefer mother’s voice after birth. Developmental Psychobiology, 56, 1–11.PubMedCrossRefGoogle Scholar
  85. Lewis, M., Wilson, C., Ban, P., & Baumel, M. (1970). An exploratory study of resting cardiac rate and variability from the last trimester of prenatal life through the first year of postnatal life. Child Development, 41, 799–811.CrossRefGoogle Scholar
  86. Low, J. A., Galbraith, R. S., Muir, D., Killen, H., Pater, B., & Karchmar, J. (1982). Intrauterine growth retardation: A study of long-term morbidity. American Journal of Obstetrics and Gynecololgy, 142, 670–677.Google Scholar
  87. Low, J. A., Handley-Derry, M. H., Burke, S. O., Peters, R. D., Pater, E. A., Killen, H. L., et al. (1992). Association of intrauterine fetal growth retardation and learning deficits at age 9 to 11 years. American Journal of Obstetrics and Gynecology, 167, 1499–1505.PubMedCrossRefGoogle Scholar
  88. Mehler, J., Bertoncini, J., Barriere, M., & Jassik-Gerschenfeld, D. (1978). Infant recognition of mother’s voice. Perception, 7, 491–497.PubMedCrossRefGoogle Scholar
  89. Mehler, J., Jusczyk, P., Lambertz, G., Halsted, N., Bertoncini, J., & Amiel-Tison, C. (1988). A precursor of language acquisition in young infants. Cognition, 29, 143–178.PubMedCrossRefGoogle Scholar
  90. Moore, J. K. (2002). Maturation of human auditory cortex: Implications for speech perception. The Annals of Otology, Rhinology, & Laryngology - Supplement, 189, 7–10.Google Scholar
  91. Moore, J. K., Ponton, C. W., Eggermont, J. J., Wu, B. J.-C., & Huang, J. Q. (1996). Perinatal maturation of the auditory brain stem response: Changes in path length and conduction velocity. Ear and Hearing, 17, 411–418.PubMedCrossRefGoogle Scholar
  92. Morlet, T., Collet, L., Duclaus, R., Lapillone, A., Salle, B., Putet, G., et al. (1995). Spontaneous and evoked otoacoustic emissions in pre-term and full-term neonates: Is there a clinical application? International Journal of Pediatric OtoRhinoLaryngology, 33, 207–211.PubMedCrossRefGoogle Scholar
  93. Morlet, T., Collet, L., Salle, B., & Morgon, A. (1993). Functional maturation of cochlear active mechanisms and of the medial olivocochlear system in humans. Acta Otolaryngology (Stockholm), 113, 271–277.CrossRefGoogle Scholar
  94. Murphy, K. P., & Smyth, C. N. (1962). Response of fetus to auditory stimulation. Lancet, 1, 972–973.CrossRefGoogle Scholar
  95. Nijhuis, J. G., Prechtl, H. F. R., Martin, C. B., & Bots, R. S. G. M. (1982). Are there behavioral states in the human fetus? Early Human Development, 6, 177–195.PubMedCrossRefGoogle Scholar
  96. Patrick, J., Campbell, K., Carmichael, L., & Probert, C. (1982). Influence of maternal heart rate and gross fetal body movements on the daily pattern of fetal heart rate near term. American Journal of Obstetrics and Gynecology, 144, 533–538.PubMedGoogle Scholar
  97. Pennington, B. F., Snyder, K. A., & Roberts, R. J. (2007). Developmental cognitive neuroscience: Origins, issues and prospects. Developmental Review, 27, 428–441.CrossRefGoogle Scholar
  98. Pieper, A. (1925). Sinnesempfindungen des kindes vor seiner geburt. Monatsschrift Fur Kinderheilkunde, 29, 236–241.Google Scholar
  99. Ponton, C. W., Moore, J. K., & Eggermont, J. J. (1996). Aud brain stem response generation by parallel pathways: Differential maturation of axonal conduction time & synaptic transmission. Ear and Hearing, 17, 402–410.PubMedCrossRefGoogle Scholar
  100. Preyer, W. (1937). Embryonic motility and sensitivity (G. E. Coghill, & W. K. Legner, Trans.). Monographs of the Society for Research in Child Development, 2 (6, Serial No. 13). [Original work published 1885].Google Scholar
  101. Pujol, R., Lavigne-Rebillard, M., & Uziel, A. (1991). Development of the human cochlea. Acta Otolarnygology (Stockholm), 482(Suppl), 7–12.CrossRefGoogle Scholar
  102. Querleu, D., & Renard, X. (1981). Les perceptions auditives du foetus humain. Médicine et Hygiène, 39, 2101–2110.Google Scholar
  103. Querleu, D., Renard, X., Boutteville, C., & Crepin, G. (1989). Hearing by the human fetus? Seminars in Perinatology, 13, 409–420.PubMedGoogle Scholar
  104. Querleu, D., Renard, X., Versyp, F., Paris-Delrue, L., Vervoort, P., & Crepin, G. (1986). Commentary. Can the fetus listen and learn. British Journal of Obstetrics and Gynaecology, 93, 411–412.PubMedCrossRefGoogle Scholar
  105. Querleu, D., Renard, X., Versyp, F., Paris-Delrue, L., & Crepin, G. (1988). Fetal hearing. European Journal of Obstetrics & Gynecology and Reproductive Biology, 29, 191–212.CrossRefGoogle Scholar
  106. Querleu, D., Renard, X., & Crepin, G. (1981). Perception auditive et réactivé foetale aux stimulations sonors. Journal de Gynécologie, Obstétrique et Biologie de la Reproduction, 10, 307–314.PubMedGoogle Scholar
  107. Rand, K., & Lahav, A. (2014). Maternal sounds elicit lower heart rate in preterm newborns in the first month of life. Early Human Development, 90(10), 679–683.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Read, J. A., & Miller, F. C. (1977). Fetal heart rate acceleration in response to acoustic stimulation as a measure of fetal well-being. American Journal of Obstetrics and Gynecology, 129, 512–517.PubMedGoogle Scholar
  109. Rees, S., Proske, U., & Harding, R. (1989). Conduction velocity and fibre diameter of the peroneal nerve in normal and growth retarded fetal sheep. Neuroscience Letters, 99, 157–163.PubMedCrossRefGoogle Scholar
  110. Rehn, A. E., Loeliger, M., Hardie, N. A., Rees, S. M., Dieni, S., & Shepherd, R. K. (2002). Chronic placental insufficiency has long-term effects on auditory function in the guinea pig. Hearing Research, 166, 159–165.PubMedCrossRefGoogle Scholar
  111. Richards, D. S., Frentzen, B., Gerhardt, K. J., McCann, M. E., & Abrams, R. M. (1992). Sound levels in the human uterus. Obstetrics & Gynecology, 80, 186–190.Google Scholar
  112. Riedl, M., Van Leeuwen, P., Suhrbier, A., Malberg, H., Gronemeyer, D., Kurths, J., et al. (2009). Testing foetal-maternal heart rate synchronization via model-based analyses. Philosophical Transactions of the Royal Society A, 367, 1407–1421.CrossRefGoogle Scholar
  113. Riggins, T., Miller, N. C., Bauer, P. J., Georgieff, M. K., & Nelson, C. A. (2009). Consequences of low neonatal iron status due to maternal diabetes mellitus on explicit memory performance in childhood. Developmental Neuropsychology, 34, 762–779.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rubel, E. W., & Fritzch, B. (2002). Auditory system development: Primary auditory neurons and their targets. In E. W. Rubel & B Fritzch. Annual Review of Neuroscience, 25, 51–101.PubMedCrossRefGoogle Scholar
  115. Schmidt, W., Boos, R., Gnirs, J., Auer, L., & Schulze, S. (1985). Fetal behavioral states and controlled sound stimulation. Early Human Development, 12, 145–153.PubMedCrossRefGoogle Scholar
  116. Shahidullah, S., & Hepper, P. G. (1993). The developmental origins of fetal responsiveness to an acoustic stimulus. Journal of Reproductive and Infant Psychology, 11, 135–142.CrossRefGoogle Scholar
  117. Siddappa, A. M., Georgieff, M. K., Wewerka, S., Worwa, C., Nelson, C. A., & deRegnier, R. A. (2004). Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatric Research, 55, 1034–1041.PubMedCrossRefGoogle Scholar
  118. Signorini, M. G., Magenes, G., Cerrutti, S., & Arduini, D. (2003). Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotacographic recordings. IEEE Transactions on Biomedical Engineering, 50, 365–374.PubMedCrossRefGoogle Scholar
  119. Smith, L., Dmochowski, P., Muir, D., & Kisilevsky, B. (2007). Estimated cardiac vagal tone predicts fetal responses to mother’s and stranger’s voices. Developmental Psychobiology, 49, 543–547.PubMedCrossRefGoogle Scholar
  120. Sohmer, H., & Freeman, S. (1995). Functional development of auditory sensitivity in the fetus and neonate. Journal of Basic and Clinical Physiology and Pharmacology, 6, 95–108.PubMedCrossRefGoogle Scholar
  121. Sohmer, H., & Freeman, S. (2001). The pathway for the transmission of external sounds into the fetal inner ear. Journal of Basic & Clinical Physiology & Pharmacology, 12, 91–99.CrossRefGoogle Scholar
  122. Sohmer, H., Perez, R., Sichel, J.-Y., Priner, R., & Freeman, S. (2001). The pathway enabling external sounds to reach and excite the fetal inner ear. Audiology & Negro-Otology, 6, 109–116.CrossRefGoogle Scholar
  123. Sontag, L. E., & Wallace, R. K. (1936). Changes in the rate of the human fetal heart in response to vibratory stimuli. American Journal of Diseases of Children, 51, 583–589.Google Scholar
  124. Swansburg, M. L., Brown, C. A., Hains, S. M. J., Smith, G. N., & Kisilevsky, B. S. (2005). Maternal cardiac autonomic function and fetal heart rate in preeclamptic compared to normotensive pregnancies. Canadian Journal of Cardiovascular Nursing, 15, 42–52.PubMedGoogle Scholar
  125. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043–1065.CrossRefGoogle Scholar
  126. Tolcos, M., Bateman, E., O’Dowd, R., Markwick, R., Vrijsen, K., Rehn, A., et al. (2011). Intrauterine growth restriction affects the maturation of myelin. Experimental Neurology, 232, 53–65.PubMedCrossRefGoogle Scholar
  127. Uziel, A. (1986). Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Oto-Laryngologica, 429(Suppl), 23–27.CrossRefGoogle Scholar
  128. Van den Bergh, B. R. H. (2011). Developmental programming of early brain and behaviour development and mental health: A conceptual framework. Developmental Medicine & Child Neurology, 53(Suppl. 4), 19–23.CrossRefGoogle Scholar
  129. Van Leeuwen, P., Geue, D., Lange, S., Cysarz, D., Bettermann, H., & Gronemeyer, D. H. (2003). Is there evidence of fetal-maternal heart rate synchronization? BMC Physiology, 3, 2.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Van Leeuwen, P., Geue, D., Thiel, M., Cysarz, D., Lange, S., Romano, M. C., …, Gronemeyer, D. H. (2009). Influence of paced maternal breathing on fetal-maternal heart rate coordination, PNAS, 106, 13661–13666.Google Scholar
  131. Vohr, B. R., Garcia Coll, C., & Oh, W. (1988). Language development of low-birthweight infants at two years. Developmental Medicine & Child Neurology, 30, 608–615.CrossRefGoogle Scholar
  132. Walker, G., Grimwade, J., & Wood, C. (1971). Intrauterine noise: A component of the fetal environment. American Journal of Obstetrics and Gynecology, 109, 91–95.PubMedGoogle Scholar
  133. Walther, F. J., & Ramaekers, L. H. (1982). Language development at the age of 3 years of infants malnourished in utero. Neuropediatrics, 13, 77–81.PubMedCrossRefGoogle Scholar
  134. Warner, J., Hains, S. M. J., & Kisilevsky, B. S. (2002). An exploratory study of fetal behavior at 33 and 36 weeks gestational age in hypertensive women. Developmental Psychobiology, 41, 156–168.PubMedCrossRefGoogle Scholar
  135. Zimmer, E. Z., Fifer, W. P., Kim, Y.-I., Rey, H. R., Chao, C. R., & Myers, M. M. (1993). Response of the premature fetus to stimulation of speech sounds. Early Human Development, 33, 207–215.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of NursingQueen’s UniversityKingstonCanada

Personalised recommendations