The Potential Value of Habituation in the Fetus

Abstract

This chapter reviews studies of habituation in the fetus. It covers the history of habituation and its relationship to altered function of the central nervous system (CNS) as well as the different ways of measuring it. It outlines how factors such as gestational age, decreased O2 tension, cigarette smoking, drugs and alcohol effect habituation. It examines the differences in habituation patterns seen in both high-risk fetuses and those with Down’s syndrome and their possible predictive value. The question of the safety of its use is also discussed. The chapter includes new studies of the possible clinical value of using habituation to repeated vibroacoustic/sound stimuli (VAS). Data are presented on the ability of fetal habituation to predict infant development at 36 months of age as well as at 7–8 years. Also presented is a new form of fetal heart rate analysis called functional regression analysis which offers the exciting possibility of predicting, whilst still in utero, the infant’s development at 18 months of age and at 3 years.

Keywords

Habituation Fetal Vibroacoustic stimulation Infant development Functional regression analysis 

References

  1. Aiken, C. E., & Lees, C. C. (2012). Long-term effects of in utero Doppler ultrasound scanning—A developmental programming perspective. Medical Hypotheses, 78(4), 539–541.CrossRefPubMedGoogle Scholar
  2. Arias, F., & Retto, H. (1988). The use of Doppler waveform analysis in the evaluation of the high-risk fetus. Obstetrics and Gynecology Clinics of North America, 15(2), 265–281.PubMedGoogle Scholar
  3. Arulkumaran, S., Talbert, D., Hsu, T. S., Chua, S., Anandakumar, C., & Ratnam, S. S. (1992). In-utero sound levels when vibroacoustic stimulation is applied to the maternal abdomen: An assessment of the possibility of cochlea damage in the fetus. British Journal of Obstetrics and Gynaecology, 99(1), 43–45.CrossRefPubMedGoogle Scholar
  4. Birnholz, J. C., & Benacerraf, B. R. (1983). The development of human fetal hearing. Science (New York, NY), 222(4623), 516–518.CrossRefGoogle Scholar
  5. Bornstein, M. H. (1989). Attention in infancy and the prediction of cognitive capacities in childhood. Seminars in Perinatology, 13(6), 450–457.PubMedGoogle Scholar
  6. Brackbill, Y. (1971). The role of the cortex in orienting. Orienting reflex in an anencephalic human infant. Developmental Psychobiology, 5, 195–201.CrossRefGoogle Scholar
  7. Brackbill, Y., Kane, J., Manniello, R. L., & Abramson, D. (1974). Obstetric premedication and infant outcome. American Journal of Obstetrics and Gynecology, 118(3), 377–384.PubMedGoogle Scholar
  8. Buckwald, J. S., & Humphrey, G. L. (1973). An analysis of habituation in specific sensory systems. In E. Stellar & J. Sprague (Eds.), Progress in physiological psychology (Vol. 5, pp. 1–75). New York, NY: Academic.Google Scholar
  9. Buss, C., Davis, E. P., Class, Q. A., Gierczak, M., Pattillo, C., Glynn, L. M., & Sandman, C. A. (2009). Maturation of the human fetal startle response: Evidence for sex-specific maturation of the human fetus. Early Human Development, 85(10), 633–638.Google Scholar
  10. Davis, M., Svensson, T. H., & Aghajanian, G. K. (1975). Effects of d- and l-amphetamine on habituation and sensitization of the acoustic startle response in rats. Psychopharmacologia, 43(1), 1–11.CrossRefPubMedGoogle Scholar
  11. Dirix, C. E. H., Hornstra, G., & Nijhuis, J. G. (2009). Fetal learning and memory: Weak associations with the early essential polyunsaturated fatty acid status. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 80(4), 207–212.CrossRefPubMedGoogle Scholar
  12. Dirix, C. E. H., Nijhuis, J. G., Jongsma, H. W., & Hornstra, G. (2009). Aspects of fetal learning and memory. Child Development, 80(4), 1251–1258.CrossRefPubMedGoogle Scholar
  13. Dustman, R. E., & Callner, D. A. (1979). Cortical evoked responses and response decrement in nonretarded and Down’s syndrome individuals. American Journal of Mental Deficiency, 83(4), 391–397.PubMedGoogle Scholar
  14. Eisenberg, R., Coursin, D. B., & Rupp, N. R. (1966). Habituation to an acoustic pattern as an index of differences among human neonates. Journal of Auditory Research, 6, 239–248.Google Scholar
  15. Figueras, F., Cruz-Martinez, R., Sanz-Cortes, M., Arranz, A., Illa, M., Botet, F., … Gratacos, E. (2011). Neurobehavioral outcomes in preterm, growth-restricted infants with and without prenatal advanced signs of brain-sparing. Ultrasound in Obstetrics & Gynecology, 38(3), 288–294.Google Scholar
  16. Fisk, N. M., Nicolaidis, P. K., Arulkumaran, S., Weg, M. W., Tannirandorn, Y., Nicolini, U., … Rodeck, C. H. (1991). Vibroacoustic stimulation is not associated with sudden fetal catecholamine release. Early Human Development, 25(1), 11–17.Google Scholar
  17. Fleischer, K. (1955). Studies on the development of inner ear function; intrauterine movements of the fetus following sound stimulation. Zeitschrift fur Laryngologie, Rhinologie, Otologie und ihre Grenzgebiete, 34(11), 733–740.PubMedGoogle Scholar
  18. Gagnon, R. (1989). Stimulation of human fetuses with sound and vibration. Seminars in Perinatology, 13(5), 393–402.PubMedGoogle Scholar
  19. Gerhardt, K. J. (1989). Characteristics of the fetal sheep sound environment. Seminars in Perinatology, 13(5), 362–370.PubMedGoogle Scholar
  20. Goodlin, R. C., & Lowe, E. W. (1974). Multiphasic fetal monitoring. A preliminary evaluation. American Journal of Obstetrics and Gynecology, 119(3), 341–357.PubMedGoogle Scholar
  21. Gruzelier, J. H., & Venables, P. H. (1972). Skin conductance orienting activity in a heterogeneous sample of schizophrenics. The Journal of Nervous and Mental Disease, 155(4), 277–287.CrossRefPubMedGoogle Scholar
  22. Hadders-Algra, M., & Touwen, B. C. (1990). Body measurements, neurological and behavioural development in six-year-old children born preterm and/or small-for-gestational-age. Early Human Development, 22(1), 1–13.CrossRefPubMedGoogle Scholar
  23. Hepper, P. (1992). An interface between Psychology and Medicine; The antenatal detection of handicap. In R. Klimek (Ed.), Pre and perinatal psycho-medicine (pp. 133–138). London, UK: The Parthenon Publishing group Ltd.Google Scholar
  24. Hepper, P. G., Dornan, J. C., & Lynch, C. (2012a). Fetal brain function in response to maternal alcohol consumption: Early evidence of damage. Alcoholism, Clinical and Experimental Research, 36(12), 2168–2175.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hepper, P. G., Dornan, J. C., & Lynch, C. (2012b). Sex differences in fetal habituation. Developmental Science, 15(3), 373–383.CrossRefPubMedGoogle Scholar
  26. Hepper, P. G., & Shahidullah, S. (1992). Habituation in normal and Down’s syndrome fetuses. The Quarterly Journal of Experimental Psychology B, Comparative and Physiological Psychology, 44(3–4), 305–317.PubMedGoogle Scholar
  27. Holloway, F. A., & Parsons, O. A. (1971). Habituation of the orienting response in brain damaged patients. Psychophysiology, 8(5), 623–634.CrossRefPubMedGoogle Scholar
  28. Hutt, S. J., & Hutt, C. (1964). Hyperactivity in a group of epileptic (and some non-epileptic) brain damaged children. Epilepsia, 5, 334–351.CrossRefPubMedGoogle Scholar
  29. Hutt, S. J., Hutt, C., Lee, D., & Ounsted, C. (1965). A behavioural and electroencephalographic study of autistic children. Journal of Psychiatric Research, 3(3), 181–197.CrossRefPubMedGoogle Scholar
  30. Hutt, C., von Bernuth, H., Lenard, H. G., Hutt, S. J., & Prechtl, H. F. (1968). Habituation in relation to state in the human neonate. Nature, 220(5167), 618–620.CrossRefPubMedGoogle Scholar
  31. Jeffrey, W. E., & Cohen, L. (1971). Habituation in the human infant. In H. W. Reese (Ed.), Advances in child development and behaviour (Vol. 6, pp. 63–97). New York, NY: Academic.Google Scholar
  32. Joy, J., McClure, N., Hepper, P. G., & Cooke, I. (2012). Fetal habituation in assisted conception. Early Human Development, 88(6), 431–436.CrossRefPubMedGoogle Scholar
  33. Kandel, E. R. (1979). Small systems of neurons. Scientific American, 241(3), 66–76.CrossRefPubMedGoogle Scholar
  34. Key, B. J. (1961). Effects of chlorpromazine and lysergic acid diethylamide on the role of habituation of the arousal response. Nature (London), 190, 275–277.CrossRefGoogle Scholar
  35. Kisilevsky, B. S., Fearon, I., & Muir, D. W. (1998). Fetuses differentiate vibroacoustic stimuli. Infant Behavior and Development, 21(1), 25–46.CrossRefGoogle Scholar
  36. Kisilevsky, B. S., & Hains, S. M. (2010). Exploring the relationship between fetal heart rate and cognition. Infant and Child Development, 19, 60–75.CrossRefGoogle Scholar
  37. Kisilevsky, B. S., Muir, D. W., & Low, J. A. (1989). Human fetal responses to sound as a function of stimulus intensity. Obstetrics and Gynecology, 73(6), 971–976.PubMedGoogle Scholar
  38. Kuhlman, K. A., Burns, K. A., Depp, R., & Sabbagha, R. E. (1988). Ultrasonic imaging of normal fetal response to external vibratory acoustic stimulation. American Journal of Obstetrics and Gynecology, 158(1), 47–51.CrossRefPubMedGoogle Scholar
  39. Kuhlman, K. A., & Depp, R. (1988). Acoustic stimulation testing. Obstetrics and Gynecology Clinics of North America, 15(2), 303–319.PubMedGoogle Scholar
  40. Lader, M. H., & Wing, L. (1965). Comparative bioassay of chlordiazepoxide and amylobarbitone sodium therapies in patients with anxiety states using physiological and clinical measures. Journal of Neurology, Neurosurgery, and Psychiatry, 28(5), 414–425.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Leader, L. R. (1987). The effects of cigarette smoking and maternal hypoxia on fetal habituation. In K. Maeda (Ed.), The fetus as a patient (pp. 83–88). Amsterdam, The Netherlands: Elsevier Science.Google Scholar
  42. Leader, L. R., & Baillie, P. (1988). The changes in fetal habituation patterns due to a decrease in inspired maternal oxygen. British Journal of Obstetrics and Gynaecology, 89, 441–446.CrossRefGoogle Scholar
  43. Leader, L. R., Baillie, P., Martin, B., Molteno, C., & Wynchank, S. (1984). Fetal responses to vibrotactile stimulation, a possible predictor of fetal and neonatal outcome. The Australian & New Zealand Journal of Obstetrics & Gynaecology, 24(4), 251–256.CrossRefGoogle Scholar
  44. Leader, L. R., Baillie, P., Martin, B., & Vermeulen, E. (1982a). The assessment and significance of habituation to a repeated stimulus by the human fetus. Early Human Development, 7(3), 211–219.CrossRefPubMedGoogle Scholar
  45. Leader, L. R., Baillie, P., Martin, B., & Vermeulen, E. (1982b). Fetal habituation in high-risk pregnancies. British Journal of Obstetrics and Gynaecology, 89(6), 441–446.CrossRefPubMedGoogle Scholar
  46. Leader, L. R., & Bennett, M. J. (1995). Fetal habituation and its possible clinical use. In M. I. Levine, R. J. Lilford, M. Bennett, & J. Punt (Eds.), Fetal and neonatal neurology and neurosurgery. London, UK: Churchill Livingstone.Google Scholar
  47. Leader, L. R., Fawcus, S., & Clark, I. (1992). The effect of repeated vibroacoustic stimulation on fetal behavioural state. Presented at the Annual meeting of the Royal Australian College of Obstetricians and Gynaecologists Melbourne.Google Scholar
  48. Leader, L. R., Smith, F. G., Lumbers, E. R., & Stevens, A. D. (1989). Effect of hypoxia and catecholamines on the habituation rates of chronically catheterized ovine fetuses. Biology of the Neonate, 56(4), 218–227.CrossRefPubMedGoogle Scholar
  49. Leader, L. R., Smith, F. G., & Lumbers, E. R. (1990). The effect of ethanol on habituation and the cardiovascular response to stimulation in fetal sheep. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 36(1–2), 87–95.CrossRefPubMedGoogle Scholar
  50. Leader, L. R., Stevens, A. D., & Lumbers, E. R. (1988). Measurement of fetal responses to vibroacoustic stimuli. Habituation in fetal sheep. Biology of the Neonate, 53(2), 73–85.CrossRefPubMedGoogle Scholar
  51. Leader, L., Tam, L., Heller, G., McMahon, C., Grant, K.-A., Austin, M.-P., … Ratcliffe, S. (2014). Can fetal heart rate habituation predict infant development? Paper presented at the Australian and New Zealand Perinatal Society Conference, Perth.Google Scholar
  52. Lecanuet, J. P., Granier-Deferre, C., Cohen, H., Le Houezec, R., & Busnel, M. C. (1986). Fetal responses to acoustic stimulation depend on heart rate variability pattern, stimulus intensity and repetition. Early Human Development, 13(3), 269–283.CrossRefPubMedGoogle Scholar
  53. Lecanuet, J. P., Granier-Deferre, C., & Busnel, M. C. (1989). Differential fetal auditory reactiveness as a function of stimulus characteristics and state. Seminars in Perinatology, 13(5), 421–429.PubMedGoogle Scholar
  54. Lewis, M. (1971). Individual differences in the measurement of early cognitive growth. Exceptional Infant. In J. Hellmuth (Ed.), Studies in abnormalities (pp. 172–210). New York, NY: Brunner Mazel.Google Scholar
  55. Madison, L. S., Adubato, S. A., Madison, J. K., Nelson, R. M., Anderson, J. C., Erickson, J., … Goodlin, R. C. (1986). Fetal response decrement: true habituation? Pediatrics, 87, 14–20.Google Scholar
  56. Madison, L. S., Madison, J. K., & Adubato, S. A. (1986). Infant behavior and development in relation to fetal movement and habituation. Child Development, 57(6), 1475–1482.CrossRefPubMedGoogle Scholar
  57. Matuz, T., Govindan, R. B., Preissl, H., Siegel, E. R., Muenssinger, J., Murphy, P., … Eswaran, H. (2012). Habituation of visual evoked responses in neonates and fetuses: A MEG study. Developmental Cognitive Neuroscience, 2(3), 303–316.Google Scholar
  58. Michaelis, R., Rooschüz, B., & Dopper, R. (1980). Prenatal origin of congenital spastic hemiparesis. Early Human Development, 4(3), 243–255.CrossRefPubMedGoogle Scholar
  59. Muenssinger, J., Matuz, T., Schleger, F., Kiefer-Schmidt, I., Goelz, R., Wacker-Gussmann, A., … Preissl, H. (2013). Auditory habituation in the fetus and neonate: An fMEG study. Developmental Science, 16(2), 287–295.Google Scholar
  60. Nijhuis, J. G., Prechtl, H. F., Martin, C. B., & Bots, R. S. (1982). Are there behavioural states in the human fetus? Early Human Development, 6(2), 177–195.CrossRefPubMedGoogle Scholar
  61. Nyman, M., Barr, M., & Westgren, M. (1992). A four-year follow-up of hearing and development in children exposed in utero to vibro-acoustic stimulation. British Journal of Obstetrics and Gynaecology, 99(8), 685–688.CrossRefPubMedGoogle Scholar
  62. Ohel, G., Birkenfeld, A., Rabinowitz, R., & Sadovsky, E. (1986). Fetal response to vibratory acoustic stimulation in periods of low heart rate reactivity and low activity. American Journal of Obstetrics and Gynecology, 154(3), 619–621.CrossRefPubMedGoogle Scholar
  63. Ohel, G., Horowitz, E., Linder, N., & Sohmer, H. (1989). Neonatal auditory acuity following in utero vibratory acoustic stimulation. American Journal of Obstetrics and Gynecology, 157, 440–441.CrossRefGoogle Scholar
  64. Palermo, A., Giglia, G., Vigneri, S., Cosentino, G., Fierro, B., & Brighina, F. (2011). Does habituation depend on cortical inhibition? Results of an rTMS study in healthy subjects. Experimental Brain Research, 212(1), 101–107.CrossRefPubMedGoogle Scholar
  65. Peiper, A. (1925). Sinnesesempfindungen des kindes vor seiner Geburt. Monatschrif Kinderh, 29, 236–241.Google Scholar
  66. Pietrantoni, M., Angel, J. L., Parsons, M. T., McClain, L., Arango, H. A., & Spellacy, W. N. (1991). Human fetal response to vibroacoustic stimulation as a function of stimulus duration. Obstetrics and Gynecology, 78(5 Pt 1), 807–811.PubMedGoogle Scholar
  67. Prechtl, H. F. (1980). The optimality concept. Early Human Development, 4(3), 201–205.CrossRefPubMedGoogle Scholar
  68. Prechtl, H. F. (1985). Ultrasound studies of human fetal behaviour. Early Human Development, 12(2), 91–98.CrossRefPubMedGoogle Scholar
  69. Ratcliffe, S. J., Heller, G. Z., & Leader, L. R. (2002a). Functional data analysis with application to periodically stimulated foetal heart rate data. II: Functional logistic regression. Statistics in Medicine, 21(8), 1115–1127.Google Scholar
  70. Ratcliffe, S. J., Leader, L. R., Heller, G. Z., & Dolby, R. (2000). Functional regression analysis of stimulated fetal heart rate data as a predictor of infant development at 18 and 36 months. Paper presented at the Australian and New Zealand Perinatal Society Conference, Brisbane.Google Scholar
  71. Ratcliffe, S. J., Leader, L. R., & Heller, G. Z. (2002b). Functional data analysis with application to periodically stimulated foetal heart rate data. I: Functional regression. Statistics in Medicine, 21(8), 1103–1114.Google Scholar
  72. Rose, S. A., & Wallace, I. F. (1985). Visual recognition memory: A predictor of later cognitive functioning in preterms. Child Development, 56(4), 843–852.CrossRefPubMedGoogle Scholar
  73. Schmidt, W., Boos, R., Gnirs, J., Auer, L., & Schulze, S. (1985). Fetal behavioural states and controlled sound stimulation. Early Human Development, 12(2), 145–153.CrossRefPubMedGoogle Scholar
  74. Selye, H. (1976). Forty years of stress research: Principal remaining problems and misconceptions. Canadian Medical Association Journal, 115(1), 53–56.PubMedPubMedCentralGoogle Scholar
  75. Shahidullah, S., & Hepper, P. G. (1993). The developmental origins of fetal responsiveness to an acoustic stimulus. Journal of Reproductive and Infant Psychology, 11(3), 135–142.CrossRefGoogle Scholar
  76. Shalev, E., Benett, M. J., Megory, E., Wallace, R. M., & Zuckerman, H. (1989). Fetal habituation to repeated sound stimulation. Israel Journal of Medical Sciences, 25(2), 77–80.PubMedGoogle Scholar
  77. Shalev, E., Weiner, E., & Serr, D. M. (1990). Fetal habituation to sound stimulus in various behavioral states. Gynecologic and Obstetric Investigation, 29(2), 115–117.CrossRefPubMedGoogle Scholar
  78. Singer, J. E., Westphal, M., & Niswander, K. R. (1968). Sex differences in the incidence of neonatal abnormalities and abnormal performance in early childhood. Child Development, 39(1), 103–112.CrossRefPubMedGoogle Scholar
  79. Smotherman, W. P., & Robinson, S. R. (1992). Habituation in the rat fetus. The Quarterly Journal of Experimental Psychology B, Comparative and Physiological Psychology, 44(3–4), 215–230.PubMedGoogle Scholar
  80. Sokolov, E. N. (1977). Brain functions: Neuronal mechanisms of learning and memory. Annual Review of Psychology, 28(1), 85–112.CrossRefGoogle Scholar
  81. Stevenson, D., & Siddle, D. (1983). Theories of habituation. In D. Siddle (Ed.), Orienting and habituation (pp. 183–236). New York, NY: John Wiley & Sons.Google Scholar
  82. Szabo, S., Tache, Y., & Somogyi, A. (2012). The legacy of Hans Selye and the origins of stress research: A retrospective 75 years after his landmark brief “letter” to the editor of Nature. Stress, 15, 472–478.CrossRefPubMedGoogle Scholar
  83. Thompson, R. F. (1992). [Personal Communication].Google Scholar
  84. Thompson, R. F., & Glansman, D. L. (1966). Neural and behavioural mechanisms of habituation and sensitisation. In T. J. Tighe & R. N. Leaton (Eds.), Habituation (pp. 49–93). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  85. Tizard, B. (1968). Habituation of EEG and skin potential changes in normal and severely subnormal children. American Journal of Mental Deficiency, 73(1), 34–40.PubMedGoogle Scholar
  86. Toomey, K. E., Rafferty, M. P., & Stamm, W. E. (1987). Unrecognized high prevalence of Chlamydia trachomatis cervical infection in an isolated Alaskan Eskimo population. JAMA, 258(1), 53–56.CrossRefPubMedGoogle Scholar
  87. van Heteren, C. F., Boekkooi, P. F., Jongsma, H. W., & Nijhuis, J. G. (2000a). Fetal learning and memory. Lancet, 356(9236), 1169–1170.CrossRefPubMedGoogle Scholar
  88. van Heteren, C. F., Boekkooi, P. F., Jongsma, H. W., & Nijhuis, J. G. (2000b). Responses to vibroacoustic stimulation in a fetus with an encephalocele compared to responses of normal fetuses. Journal of Perinatal Medicine, 28(4), 306–308.PubMedGoogle Scholar
  89. van Heteren, C. F., Boekkooi, P. F., Jongsma, H. W., & Nijhuis, J. G. (2001a). Fetal habituation to vibroacoustic stimulation in relation to fetal states and fetal heart rate parameters. Early Human Development, 61(2), 135–145.CrossRefPubMedGoogle Scholar
  90. van Heteren, C. F., Boekkooi, P. F., Schiphorst, R. H., Jongsma, H. W., & Nijhuis, J. G. (2001b). Fetal habituation to vibroacoustic stimulation in uncomplicated postterm pregnancies. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 97(2), 178–182.CrossRefPubMedGoogle Scholar
  91. van Heteren, C. F., Focco Boekkooi, P., Jongsma, H. W., & Nijhuis, J. G. (2001). The responses to repeated vibroacoustic stimulation in a fetus with trisomy 18. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 96(1), 123–125.CrossRefPubMedGoogle Scholar
  92. Visser, G. H., Mulder, H. H., Wit, H. P., Mulder, E. J., & Prechtl, H. F. (1989). Vibro-acoustic stimulation of the human fetus: Effect on behavioural state organization. Early Human Development, 19(4), 285–296.CrossRefPubMedGoogle Scholar
  93. Wyers, E. J., Peek, H. V., & Herz, M. (1973). Behavioural habituation in invertebrates. In H. V. S. Peek & M. J. Herz (Eds.), Habituation. Physiological substrates (Vol. 2, pp. 1–57). New York, NY: Academic.CrossRefGoogle Scholar
  94. Yao, Q. W., Jakobsson, J., Nyman, M., Rabaeus, H., Till, O., & Westgren, M. (1990). Fetal responses to different intensity levels of vibroacoustic stimulation. Obstetrics and Gynecology, 75(2), 206–209.PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Women’s and Children’s HealthUniversity of New South WalesSydneyAustralia

Personalised recommendations