Leader Election and Shape Formation with Self-organizing Programmable Matter

  • Zahra Derakhshandeh
  • Robert Gmyr
  • Thim Strothmann
  • Rida Bazzi
  • Andréa W. Richa
  • Christian Scheideler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9211)

Abstract

In this paper we consider programmable matter consisting of simple computational elements, called particles, that can establish and release bonds and can actively move in a self-organized way, and we investigate the feasibility of solving fundamental problems relevant for programmable matter. As a model for such self-organizing particle systems, we will use a generalization of the geometric amoebot model first proposed in [21]. Based on the geometric model, we present efficient local-control algorithms for leader election and line formation requiring only particles with constant size memory, and we also discuss the limitations of solving these problems within the general amoebot model.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 250–259 (2013)Google Scholar
  3. 3.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)CrossRefGoogle Scholar
  4. 4.
    Arbuckle, D., Requicha, A.: Self-assembly and self-repair of arbitrary shapes by a swarm of reactive robots: algorithms and simulations. Auton. Robots 28(2), 197–211 (2010)CrossRefGoogle Scholar
  5. 5.
    Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network RESET (extended abstract). In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 254–263 (1994)Google Scholar
  6. 6.
    Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhattacharyya, A., Braverman, M., Chazelle, B., Nguyen, H.L.: On the convergence of the hegselmann-krause system. In: Proceedings of the 4th Innovations in Theoretical Computer Science (ITCS), pp. 61–66 (2013)Google Scholar
  8. 8.
    Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Appl. Math. 71, 79–94 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–240 (2012)Google Scholar
  10. 10.
    Butler, Z.J., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919–937 (2004)CrossRefGoogle Scholar
  11. 11.
    B. Chazelle. Natural algorithms. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 422–431 (2009)Google Scholar
  12. 12.
    Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assembly with universally foldable strings (moteins). IEEE Trans. Robot. 27(4), 718–729 (2011)CrossRefGoogle Scholar
  15. 15.
    Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the 1994 International Conference on Robotics and Automation (ICRA), pp. 449–455 (1994)Google Scholar
  16. 16.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399(1–2), 71–82 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proceedings of 29th ACM Symposium on Principles of Distributed Computing (PODC) (2010)Google Scholar
  19. 19.
    Defago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of arbitrary shapes using rnase enzymes: meeting the kolmogorov bound with small scale factor (extended abstract). In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science, pp. 201–212 (2011)Google Scholar
  21. 21.
    Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: Brief announcement: amoebot – a new model for programmable matter. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 220–222 (2014)Google Scholar
  22. 22.
    Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)CrossRefGoogle Scholar
  23. 23.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1), 412–447 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures - cebot. In: Proceedings of the International Conference on Intelligent Robots and Systems, (IROS), pp. 145–150 (1988)Google Scholar
  26. 26.
    Hendricks, J., Patitz, M.J., Rogers, T.A.: Replication of arbitrary hole-free shapes via self-assembly with signal-passing tiles (2015). arXiv preprint arXiv:1503.01244
  27. 27.
    Hsiang, T.-R., Arkin, E., Bender, M., Fekete, S., Mitchell, J.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Proceedings of the 5th Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 77–94 (2002)Google Scholar
  28. 28.
    Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: 22nd Annual Symposium on Foundations of Computer Science, (FOCS), pp. 150–158 (1981)Google Scholar
  29. 29.
    Itkis, G., Levin, L.: Fast and lean self-stabilizing asynchronous protocols. In: 35th Annual Symposium on Foundations of Computer Science, (FOCS), pp. 226–239 (1994)Google Scholar
  30. 30.
    Kernbach, S. (ed.): Handbook of Collective Robotics - Fundamentals and Challanges. Pan Stanford Publishing, Singapore (2012)Google Scholar
  31. 31.
    Kling, P., Meyer auf der Heide, F.: Convergence of local communication chain strategies via linear transformations. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 159–166 (2011)Google Scholar
  32. 32.
    Li, K., Thomas, K., Torres, C., Rossi, L., Shen, C.-C.: Slime mold inspired path formation protocol for wireless sensor networks. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 299–311. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  33. 33.
    McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)Google Scholar
  34. 34.
    Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)CrossRefGoogle Scholar
  36. 36.
    Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of metamorphic robot chains. Distrib. Comput. 17(2), 171–189 (2004)CrossRefGoogle Scholar
  37. 37.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional dna crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  38. 38.
    Woods, D.: Intrinsic universality and the computational power of self-assembly. In: Neary, T., Cook, M. (eds) Proceedings of the 6th Conference on Machines, Computations and Universality 2013, (MCU), EPTCS, vol. 128, pp. 16–22 (2013)Google Scholar
  39. 39.
    Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS, pp. 353–354 (2013)Google Scholar
  40. 40.
    Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zahra Derakhshandeh
    • 1
  • Robert Gmyr
    • 2
  • Thim Strothmann
    • 2
  • Rida Bazzi
    • 1
  • Andréa W. Richa
    • 1
  • Christian Scheideler
    • 2
  1. 1.Computer Science, CIDSEArizona State UniversityTempeUSA
  2. 2.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations