Universal Computation and Optimal Construction in the Chemical Reaction Network-Controlled Tile Assembly Model

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9211)


Tile-based self-assembly and chemical reaction networks provide two well-studied models of scalable DNA-based computation. Although tile self-assembly provides a powerful framework for describing Turing-universal self-assembling systems, assembly logic in tile self-assembly is localized, so that only the nearby environment can affect the process of self-assembly. We introduce a new model of tile-based self-assembly in which a well-mixed chemical reaction network interacts with self-assembling tiles to exert non-local control on the self-assembly process. Through simulation of multi-stack machines, we demonstrate that this new model is efficiently Turing-universal, even when restricted to unbounded space in only one spatial dimension. Using a natural notion of program complexity, we also show that this new model can produce many complex shapes with programs of lower complexity. Most notably, we show that arbitrary connected shapes can be produced by a program with complexity bounded by the Kolmogorov complexity of the shape, without the large scale factor that is required for the analogous result in the abstract tile assembly model. These results suggest that controlled self-assembly provides additional algorithmic power over tile-only self-assembly, and that non-local control enhances our ability to perform computation and algorithmically self-assemble structures from small input programs.


Tile Assembly Model Tile-based Self-assembly Abstract Chemical Reaction Networks Ataman Turing-universal Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge financial support from National Science Foundation grant CCF-1317694. We also thank Dave Doty, for his helpful comments and suggestions, and Kevin Li, for his useful suggestions on an early draft of this paper.


  1. 1.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: ACM Symposium on Theory of Computing (STOC), pp. 740–748 (2001)Google Scholar
  2. 2.
    Aggarwal, G., Cheng, Q., Goldwasser, M.H., Kao, M.Y., de Espanes, P.M., Schweller, R.T.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34(6), 1493–1515 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci. 106(15), 6054–6059 (2009)CrossRefGoogle Scholar
  4. 4.
    Bennett, C.H.: The thermodynamics of computation - a review. Int. J. Theor. Phys. 21(12), 905–940 (1982)CrossRefGoogle Scholar
  5. 5.
    Cardelli, L., Zavattaro, G.: On the computational power of biochemistry. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 65–80. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with chemical reaction networks. Nat. Comput. 13(4), 517–534 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, Y.J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)CrossRefGoogle Scholar
  8. 8.
    Condon, A., Hu, A.J., Maňuch, J., Thachuk, C.: Less haste, less waste: on recycling and its limits in strand displacement systems. Interface Focus 2(4), 512–521 (2012)CrossRefGoogle Scholar
  9. 9.
    Cook, M., Fu, Y., Schweller, R.: Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 570–589. SIAM (2011)Google Scholar
  10. 10.
    Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. 101(43), 15275–15278 (2004)CrossRefGoogle Scholar
  11. 11.
    Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)CrossRefGoogle Scholar
  12. 12.
    Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly. Algorithmica 66, 153–172 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRefGoogle Scholar
  15. 15.
    Padilla, J.E., Sha, R., Kristiansen, M., Chen, J., Jonoska, N., Seeman, N.C.: A signal-passing DNA-strand-exchange mechanism for active self-assembly of DNA nanostructures. Angew. Chem. Int. Ed. 54(20), 5939–5942 (2015)CrossRefGoogle Scholar
  16. 16.
    Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality at temperature 1 with a single negative glue. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 175–189. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  18. 18.
    Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6(12), 763–772 (2011)CrossRefGoogle Scholar
  19. 19.
    Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  20. 20.
    Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)CrossRefGoogle Scholar
  21. 21.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), e424 (2004)CrossRefGoogle Scholar
  22. 22.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: ACM Symposium on Theory of Computing (STOC), pp. 459–468. ACM (2000)Google Scholar
  23. 23.
    Rothemund, P.W., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126(50), 16344–16352 (2004)CrossRefGoogle Scholar
  24. 24.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic circuits. Science 314(5805), 1585–1588 (2006)CrossRefGoogle Scholar
  25. 25.
    Seeman, N.C.: An overview of structural DNA nanotechnology. Mol. Biotechnol. 37(3), 246–257 (2007)CrossRefGoogle Scholar
  26. 26.
    Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2012)Google Scholar
  27. 27.
    Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Nat. Comput. 7(4), 615–633 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)CrossRefGoogle Scholar
  29. 29.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Summers, S.M.: Reducing tile complexity for the self-assembly of scaled shapes through temperature programming. Algorithmica 63(1–2), 117–136 (2011)MathSciNetGoogle Scholar
  31. 31.
    Wei, B., Dai, M., Yin, P.: Complex shapes self-assembled from single-stranded DNA tiles. Nature 485(7400), 623–626 (2012)CrossRefGoogle Scholar
  32. 32.
    Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Programming biomolecular self-assembly pathways. Nature 451(7176), 318–322 (2008)CrossRefGoogle Scholar
  33. 33.
    Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4 (2013). Article No. 1965Google Scholar
  34. 34.
    Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)CrossRefGoogle Scholar
  35. 35.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations