Virtual Suspect William

  • Merijn Bruijnes
  • Rieks op den Akker
  • Arno Hartholt
  • Dirk Heylen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9238)

Abstract

We evaluate an algorithm which computes the responses of an agent that plays the role of a suspect in simulations of police interrogations. The algorithm is based on a cognitive model - the response model - that is centred around keeping track of interpersonal relations. The model is parametrized in such a way that different personalities of the virtual suspect can be defined. In the evaluation we defined three different personalities and had participants guess the personality based on the responses the model provided in an interaction with the participant. We investigate what factors contributed to the ability of a virtual agent to show behaviour that was recognized by participants as belonging to a persona.

Keywords

Social interaction Police interview Response model Data analysis Mental models Virtual agents Tutoring application 

Notes

Acknowledgements

This publication was supported by the Dutch national program COMMIT.

References

  1. 1.
    Boud, D., Keogh, R., Walker, D.: Reflection: Turning Experience into Learning. Nichols Publishing Company, New York (1985)Google Scholar
  2. 2.
    Brown, P., Levinson, S.C.: Politeness: Some Universals in Language Usage. Cambridge University Press, Cambridge (1987)Google Scholar
  3. 3.
    Bruijnes, M., Linssen, J., op den Akker, R., Theune, M., Wapperom, S., Broekema, C., Heylen, D.: Social behaviour in police interviews: relating data to theories. In: D’Errico, F., Poggi, I., Vinciarelli, A., Vincze, L. (eds.) Conflict and Multimodal Communication, pp. 317–347. Springer International Publishing, Switzerland (2015) Google Scholar
  4. 4.
    Bruijnes, M., Wapperom, S., op den Akker, H., Heylen, D.: A virtual suspect agents response model. In: Ring, L., Leite, Y., Dias, J. (eds.) Fourteenth InternationalConference on Intelligent Virtual Agents (IVA 2014); Proceedings of the Workshop on Affective Agents, pp. 17–24 (2014)Google Scholar
  5. 5.
    Bruijnes, M., Wapperom, S., op den Akker, R., Heylen, D.: A method to evaluate response models. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS, vol. 8637, pp. 67–70. Springer, Heidelberg (2014) Google Scholar
  6. 6.
    Hartholt, A., Traum, D., Marsella, S.C., Shapiro, A., Stratou, G., Leuski, A., Morency, L.-P., Gratch, J.: All together now. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.) IVA 2013. LNCS, vol. 8108, pp. 368–381. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Leary, T.: Interpersonal Diagnosis of Personality: Functional Theory and Methodology for Personality Evaluation. Ronald Press, New York (1957) Google Scholar
  8. 8.
    Leuski, A., Traum, D.: NPCEditor: creating virtual human dialogue using information retrieval techniques. AI Mag. 32(2), 42–56 (2011)Google Scholar
  9. 9.
    Tickle-Degnen, L., Rosenthal, R.: The nature of rapport and its nonverbal correlates. Psychol. Inquiry 1(4), 285–293 (1990)CrossRefGoogle Scholar
  10. 10.
    Traum, D., Roque, A., Leuski, A., Georgiou, P., Gerten, J., Martinovski, B., Narayanan, S., Robinson, S., Vaswani, A.: Hassan: a virtual human for tactical questioning. In: Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pp. 71–74 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Merijn Bruijnes
    • 1
  • Rieks op den Akker
    • 1
  • Arno Hartholt
    • 2
  • Dirk Heylen
    • 1
  1. 1.Human Media InteractionUniversity of TwenteEnschedeThe Netherlands
  2. 2.Institute for Creative TechnologyUniversity of Southern CaliforniaPlaya VistaUSA

Personalised recommendations