Advertisement

Modeling Warmth and Competence in Virtual Characters

  • Truong-Huy D. NguyenEmail author
  • Elin Carstensdottir
  • Nhi Ngo
  • Magy Seif El-Nasr
  • Matt Gray
  • Derek Isaacowitz
  • David Desteno
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9238)

Abstract

Developing believable virtual characters has been a subject of research in many fields including graphics, animations, artificial intelligence, and human-computer interaction. One challenge towards commoditizing the use of virtual humans is the ability to algorithmically construct characters of different stereotypes. In this paper, we present our efforts in designing virtual characters that can exhibit non-verbal behaviors to reflect varying degrees of warmth and competence, two personality traits shown to underlie social judgments and form stereotypical perception. To embark on developing a computational behavior model that portrays these traits, we adopt an iterative design methodology tuning the design using theory from theatre, animation and psychology, expert reviews, user testing and feedback. Using this process we were able to construct a set of virtual characters that portray variations of warmth and competence through combination of gestures, use of space, and gaze behaviors. In this paper we discuss the design methodology, the resultant system, and initial experiment results showing the promise of the model.

Keywords

Believable virtual characters Non-verbal behavior Personality traits 

Notes

Acknowledgements

We would like to thank Stacy Marsella for his insightful discussions and advice, Stacy Marcotte for helping us setting up validation experiments, and Teresa Dey for the character animations. This research is supported by Northeastern Tier 1 Grant.

References

  1. 1.
    André, E., Klesen, M., Gebhard, P., Allen, S., Rist, T.: Integrating models of personality and emotions into lifelike characters. Affect. Interact. 1814, 1–15 (2000)CrossRefGoogle Scholar
  2. 2.
    Banziger, T., Scherer, K.R.: (University of G. Introducing the Geneva Multimodal Emotion Portrayal (GEMEP) Corpus. A blueprint for an affectively competent agent: Cross-fertilization between Emotion Psychology, Affective Neuroscience, and Affective Computing (2010)Google Scholar
  3. 3.
    Brambilla, M., Sacchi, S., Castellini, F., Riva, P.: The effects of status on perceived warmth and competence: malleability of the relationship between status and stereotype content. Soc. Psychol. 41(2010), 82–87 (2010)CrossRefGoogle Scholar
  4. 4.
    Carli, L.L., LaFleur, S.J., Loeber, C.C.: Nonverbal behavior, gender, and influence. J. Pers. Soc. Psychol. 68, 1030–1041 (1995)CrossRefGoogle Scholar
  5. 5.
    Carney, D.R., Hall, J.A., LeBeau, L.S.: Beliefs about the nonverbal expression of social power. J. Nonverbal Behav. 29(2005), 105–123 (2005)CrossRefGoogle Scholar
  6. 6.
    Castle, E., Eisenberger, N.I., Seeman, T.E., Moons, W.G., Boggero, I.A., Grinblatt, M.S., Taylor, S.E.: Neural and behavioral bases of age differences in perceptions of trust. Proc. Nat. Acad. Sci. USA 109(51), 20848–20852 (2012)CrossRefGoogle Scholar
  7. 7.
    Colby, B.N., Ortony, A., Clore, G.L., Collins, A.: The cognitive structure of emotions. Contemp. Sociol. 18, 851–859 (1989)CrossRefGoogle Scholar
  8. 8.
    Costa, P.T., McCrae, R.R.: Normal personality assessment in clinical practice: the NEO personality inventory. Psychol. Assess. 4, 5–13 (1992)CrossRefGoogle Scholar
  9. 9.
    Cuddy, A.J.C., Glick, P., Beninger, A.: The dynamics of warmth and competence judgments, and their outcomes in organizations. Res. Organ. Behav. 31, 73–98 (2011)CrossRefGoogle Scholar
  10. 10.
    Egges, A., Kshirsagar, S., Magnenat-Thalmann, N.: A model for personality and emotion simulation. In: Palade, V., Howlett, R.J., Jain, L. (eds.). LNCS, vol. 2773, pp. 453–461. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Fiske, S.T., Cuddy, A.J.C., Glick, P.: Universal dimensions of social cognition: warmth and competence. Trends Cogn. Sci. 11(2), 77–83 (2007)CrossRefGoogle Scholar
  12. 12.
    Fox, J., Ahn, S.J(.: Recommendations for designing maximally effective and persuasive health agents. In: Bickmore, T., Marsella, S., Sidner, C. (eds.) IVA 2014. LNCS, vol. 8637, pp. 178–181. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    Hall, J.A., Coats, E.J., LeBeau, L.S.: Nonverbal behavior and the vertical dimension of social relations: a meta-analysis. Psychol. Bull. 131(2005), 898–924 (2005)CrossRefGoogle Scholar
  14. 14.
    Hartholt, A., Traum, D., Marsella, S.C., Shapiro, A., Stratou, G., Leuski, A., Morency, L.-P., Gratch, J.: All together now. In: Aylett, R., Krenn, B., Pelachaud, C., Shimodaira, H. (eds.) IVA 2013. LNCS, vol. 8108, pp. 368–381. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Johnsen, K., Raij, A., Stevens, A., Lind, D.S., Lok, B.: The validity of a virtual human experience for interpersonal skills education. In: Proceedings of the SIGCHI Conference on Human factors in Computing Systems - CHI 2007, p. 1049, New York, USA, April 2007Google Scholar
  16. 16.
    Johnson, W.L., Valente, A.: Tactical language and culture training systems: using ai to teach foreign languages and cultures. AI Mag. 30(2), 72–83 (2009)Google Scholar
  17. 17.
    Judd, C.M., James-Hawkins, L., Yzerbyt, V., Kashima, Y.: Fundamental dimensions of social judgment: understanding the relations between judgments of competence and warmth. J. Pers. Soc. Psychol. 89(2005), 899–913 (2005)CrossRefGoogle Scholar
  18. 18.
    Kim, J., Hill, R.W., Durlach, P., Lane, H.C., Forbell, E., Core, M., Marsella, S.C., Pynadath, D.V., Hart, J.: BiLAT: a game-based environment for practicing negotiation in a cultural context. Int. J. Artif. Intell. Educ. 19, 289–308 (2009). Issue on Ill-Defined DomainsGoogle Scholar
  19. 19.
    Kleinert, H.L., Sanders, C., Mink, J., Nash, D., Johnson, J., Boyd, S., Challman, S.: Improving student dentist competencies and perception of difficulty in delivering care to children with developmental disabilities using a virtual patient module. J. Dental Educ. 71(2), 279–286 (2007)Google Scholar
  20. 20.
    Laban, R., Lawrence, F.C.: Effort: Economy of Human Movement. Macdonald & Evans, London (1979)Google Scholar
  21. 21.
    Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K.R., Banziger, T., Roesch, E. (eds.) A Blueprint for an Affectively Competent Agent: Cross-Fertilization Between Emotion Psychology, Affective Neuroscience, and Affective Computing, pp. 21–41. Oxford University Press, Oxford (2010)Google Scholar
  22. 22.
    McNeill, D.: Hand and Mind: What Gestures Reveal About Thought. University of Chicago Press, Chicago (1992)Google Scholar
  23. 23.
    Reilly, S.: Believable Social and Emotional Agents. Carnegie Mellon University (1996)Google Scholar
  24. 24.
    Sanders, C.L., Kleinert, H.L., Free, T., Slusher, I., Clevenger, K., Johnson, S., Boyd, S.E.: Caring for children with intellectual and developmental disabilities: virtual patient instruction improves students’ knowledge and comfort level. J. Pediatr. Nurs. 22(6), 457–466 (2007)CrossRefGoogle Scholar
  25. 25.
    Surakka, V., Hietanen, J.K.: Facial and emotional reactions to Duchenne and non-Duchenne smiles. Int. J. Psychophysiol. 29(1998), 23–33 (1998)CrossRefGoogle Scholar
  26. 26.
    Thiebaux, M., Marsella, S., Marshall, A.N. and Kallmann, M.: SmartBody: behavior realization for embodied conversational agents. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 151–158, May 2008Google Scholar
  27. 27.
    Triola, M., Feldman, H., Kalet, A.L., Zabar, S., Kachur, E.K., Gillespie, C., Anderson, M., Griesser, C., Lipkin, M.: A randomized trial of teaching clinical skills using virtual and live standardized patients. J. Gen. Intern. Med. 21(5), 424–429 (2006)CrossRefGoogle Scholar
  28. 28.
    Vilhjálmsson, H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp, S., Mancini, M., Marsella, S., Marshall, A.N., Pelachaud, C., et al.: The behavior markup language: recent developments and challenges. Intell. Virtual Agents 2007, 99–111 (2007)CrossRefGoogle Scholar
  29. 29.
    Virtual reality used to train Soldiers in new training simulator (2012). http://www.army.mil/article/84453. Accessed 09 October 2014
  30. 30.
    Virtual training puts the “real” in realistic environment (2013). http://www.army.mil/article/97582/Virtual_training_puts_the__real__in_realistic_environment/. Accessed 09 October 2014
  31. 31.
    Wojciszke, B., Bazinska, R., Jaworski, M.: On the dominance of moral categories in impression formation. Pers. Soc. Psychol. Bull. 23, 1 157–1 172 (1998)Google Scholar
  32. 32.
    Word, C.O., Zanna, M.P., Cooper, J.: The nonverbal mediation of self-fulfilling prophecies in interracial interaction. J. Exp. Soc. Psychol. 10, 109–120 (1974)CrossRefGoogle Scholar
  33. 33.
    Ybarra, O., Chan, E., Park, D.: Young and old adults’ concerns about morality and competence. Motiv. Emot. 25(2001), 85–100 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Truong-Huy D. Nguyen
    • 1
    Email author
  • Elin Carstensdottir
    • 1
  • Nhi Ngo
    • 1
  • Magy Seif El-Nasr
    • 1
  • Matt Gray
    • 1
  • Derek Isaacowitz
    • 1
  • David Desteno
    • 1
  1. 1.Northeastern UniversityBostonUSA

Personalised recommendations