A Private Lookup Protocol with Low Online Complexity for Secure Multiparty Computation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8958)

Abstract

We present a secure multiparty computation (SMC) protocol for obliviously reading an element of an array, achieving constant online communication complexity. While the total complexity of the protocol is linear in the size of the array, the bulk of it is pushed into the offline precomputation phase, which is independent of the array and the index of the element.

Although private lookup is less general than oblivious RAM (ORAM), it allows us to give new and/or more efficient SMC protocols for a number of important computational tasks. In this paper, we present protocols for executing deterministic finite automata (DFA), and for finding shortest distances in sparse graphs.

All our protocols are given in the arithmetic black box model, which allows them to be freely composed and used in larger applications.

Keywords

Secure multiparty computation Arithmetic black box Private lookup 

References

  1. 1.
    Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 239–257. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite automata. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Privacy XXIV. LNCS, vol. 6166, pp. 49–64. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  3. 3.
    Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 192–206. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  4. 4.
    Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418 (2012)CrossRefGoogle Scholar
  5. 5.
    Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  6. 6.
    Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security Symposium. pp. 223–239. Washington, D.C., USA (2010)Google Scholar
  7. 7.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)Google Scholar
  8. 8.
    Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  9. 9.
    Cramer, R., Damgård, I.B., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Damgård, I.: Multiparty computation, an introduction. In: Catalano, D., Cramer, R., Di Crescenzo, G., Pointcheval, D., Takagi, T., Damgård, I. (eds.) Contemporary Cryptology, Advanced Courses in Mathematics - CRM Barcelona, pp. 41–87. Birkhuser, Basel (2005). http://dx.doi.org/10.1007/3-7643-7394-6_2 Google Scholar
  11. 11.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  12. 12.
    Damgård, I., Geisler, M., Krøigaard, M., Nielsen, J.B.: Asynchronous Multiparty computation: theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 160–179. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  13. 13.
    Damgård, I., Meldgaard, S., Nielsen, J.B.: Perfectly Secure oblivious RAM without random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  14. 14.
    Damgård, I.B., Nielsen, J.B.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  15. 15.
    Frikken, K.B.: Practical private DNA string searching and matching through efficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security XXIII. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 332–350. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty computations with applications to threshold cryptography. In: PODC, pp. 101–111 (1998)Google Scholar
  18. 18.
    Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Optimizing ORAM and using it efficiently for secure computation. In: De Cristofaro, E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  19. 19.
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987)Google Scholar
  20. 20.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. J. ACM 43(3), 431–473 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Henecka, W., Kögl, S., Sadeghi, A.R., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: CCS 2010: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 451–462. ACM, New York (2010)Google Scholar
  22. 22.
    Keller, M., Scholl, P.: Efficient, Oblivious Data Structures for MPC. Cryptology ePrint Archive, Report 2014/137 (2014). http://eprint.iacr.org/
  23. 23.
    Keller, M., Scholl, P., Smart, N.P.: An architecture for practical actively secure MPC with dishonest majority. In: Sadeghi et al. [31], pp. 549–560Google Scholar
  24. 24.
    Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database, computationally-private information retrieval. In: FOCS, pp. 364–373. IEEE Computer Society (1997)Google Scholar
  25. 25.
    Launchbury, J., Diatchki, I.S., DuBuisson, T., Adams-Moran, A.: Efficient lookup-table protocol in secure multiparty computation. In: Thiemann, P., Findler, R.B. (eds.) ICFP, pp. 189–200. ACM (2012)Google Scholar
  26. 26.
    Lipmaa, H.: First CPIR protocol with data-dependent computation. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  27. 27.
    Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  28. 28.
    Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model secure computation. In: Proceedings of 2014 IEEE Symposium on Security and Privacy. IEEE (2014)Google Scholar
  29. 29.
    Malka, L., Katz, J.: Vmcrypt - modular software architecture for scalable secure computation. Cryptology ePrint Archive, Report 2010/584 (2010). http://eprint.iacr.org
  30. 30.
    Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  31. 31.
    Sadeghi, A.R., Gligor, V.D., Yung, M. (eds.): 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS 2013, pp.4–8, ACM, Berlin, November 2013Google Scholar
  32. 32.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi et al. [31], pp. 299–310Google Scholar
  34. 34.
    Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.U.: Privacy preserving error resilient DNA searching through oblivious automata. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and Communications Security, pp. 519–528. ACM (2007)Google Scholar
  35. 35.
    Wei, L., Reiter, M.K.: Third-party private DFA evaluation on encrypted files in the cloud. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 523–540. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  36. 36.
    Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Cybernetica ASTartuEstonia

Personalised recommendations