Advertisement

Dynamic Load Balancing Based on Rectilinear Partitioning in Particle-in-Cell Plasma Simulation

  • Igor Surmin
  • Alexei Bashinov
  • Sergey Bastrakov
  • Evgeny Efimenko
  • Arkady Gonoskov
  • Iosif MeyerovEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9251)

Abstract

This paper considers load balancing in Particle-in-Cell plasma simulation on cluster systems. We propose a dynamic load balancing scheme based on rectilinear partitioning and discuss implementation of efficient imbalance estimation and rebalancing. We analyze the impact of load balancing on performance and accuracy. On a test plasma heating problem dynamic load balancing yields nearly 2 times speedup and better scaling. On the real-world plasma target irradiation simulation load balancing allows to mitigate particle resampling and thus improve accuracy of the simulation without increasing the runtime. Balancing-related overhead in both cases are under 1.5 % of total run time.

Keywords

Load balancing High performance computing Plasma simulation Particle-in-cell 

References

  1. 1.
    Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor & Francis Group, New York (2005)Google Scholar
  2. 2.
    Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Surmin, I., Wallin, E.: Extending PIC Schemes for The Study of Physics in Ultra-Strong Laser Fields. arXiv:1412:6426 (2014)Google Scholar
  3. 3.
    Pukhov, A.: Three-dimensional electromagnetic relativistic particle-in-cell code VLPL. J. Plasma Phys. 61, 425–433 (1999)CrossRefGoogle Scholar
  4. 4.
    Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T., Adam, J.C.: OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Sloot, P.M.A., Hoekstra, A.G., Tan Kenneth, C.J., Dongarra, J.J. (eds.) ICCS-ComputSci 2002, Part III. LNCS, vol. 2331, p. 342. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  5. 5.
    Burau, H., Widera, R., Honig, W., et al.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 33, 2831–2839 (2010)CrossRefGoogle Scholar
  6. 6.
    Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov, I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci. 3, 474–479 (2012)CrossRefGoogle Scholar
  7. 7.
    Bastrakov, S., Meyerov, I., Surmin, I., Efimenko, E., Gonoskov, A., Malyshev, A., Shiryaev, M.: Particle-in-cell plasma simulation on CPUs, GPUs and Xeon Phi coprocessors. In: Kunkel, J.M., Ludwig T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 513–514. Springer (2014)Google Scholar
  8. 8.
    Liewer, P.C., Decyk, V.K.: A general concurrent algorithm for plasma particle-in-cell codes. J. Comput. Phs. 85, 302–322 (1989)CrossRefGoogle Scholar
  9. 9.
    Walker, D.W.: Characterising the parallel performance of a large-scale, particle-in-cell plasma simulation code. Concurr. Pract. Experience 2, 257–288 (1990)CrossRefGoogle Scholar
  10. 10.
    Kraeva, M.A., Malyshkin, V.E.: Implementation of PIC method on MIMD multicomputers with assembly technology. In: Hertzberger, B., Sloot, P. (eds.) High-Performance Computing and Networking. LNCS, vol. 1225, pp. 541–549. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  11. 11.
    Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Int. J. future Gener. Comput. Syst. 17, 755–765 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fox, G.C.: A review of automatic load balancing and decomposition methods for the hypercube. Numer. Algorithms Mod. Parallel Comput. Architect. 13, 63–76 (1988)CrossRefGoogle Scholar
  13. 13.
    Barnes, J., Hutt, P.: A hierarchical O(N logN) force calculation algorithm. Nature. 324, 446–449 (1986)CrossRefGoogle Scholar
  14. 14.
    Plimpton, S.J., Seidel, D.B., Pasik, M.F., Coats, R.S., Montry, G.R.: A load-balancing algorithm for a parallel electromagnetic particle-in-cell code. Comput. Phys. Commun. 152, 227–241 (2003)CrossRefGoogle Scholar
  15. 15.
    Nakashima, H., Miyake, Y., Usui, H., Omura, Y.: OhHelp: a scalable domain-decomposing dynamic load balancing for particle-in-cell simulations. In: 23rd International Conference on Supercomputing, pp. 90–99. ACM New York (2009)Google Scholar
  16. 16.
    Nicol, D.N.: Rectilinear partitioning of irregular data parallel computations. J. Parallel Distrib. Comput. 23, 119–134 (1994)CrossRefGoogle Scholar
  17. 17.
    Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (1995)zbMATHGoogle Scholar
  19. 19.
    Corradi, A., Leonardi, L., Zambonelli, F.: Performance comparison of load balancing policies based on a diffusion scheme. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par’97 Parallel Processing. LNCS, vol. 1300, pp. 882–886. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  20. 20.
    Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and multi-GPU platforms using functional performance models. IEEE Trans. Comput. 12, 14 (2014)Google Scholar
  21. 21.
    Bashinov, A.V., Kim, A.V.: On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects. Phys. Plasmas 20, 113111 (2013)CrossRefGoogle Scholar
  22. 22.
    Bell, A.R., Kirk, J.G.: Phys. Rev. Lett. 101, 200403 (2008)CrossRefGoogle Scholar
  23. 23.
    Ritus, V.: Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497–617 (1985)CrossRefGoogle Scholar
  24. 24.
    Nikishov, A.: Problems of intense external-field intensity in quantum electrodynamics. J. Sov. Laser Res. 6, 619–717 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Igor Surmin
    • 1
  • Alexei Bashinov
    • 1
    • 2
  • Sergey Bastrakov
    • 1
  • Evgeny Efimenko
    • 1
    • 2
  • Arkady Gonoskov
    • 1
    • 2
    • 3
  • Iosif Meyerov
    • 1
    Email author
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhny NovgorodRussia
  2. 2.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia
  3. 3.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations