Advertisement

Non-preemptive Scheduling on Machines with Setup Times

  • Alexander MäckerEmail author
  • Manuel Malatyali
  • Friedhelm Meyer auf der Heide
  • Sören Riechers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)

Abstract

Consider the problem in which n jobs that are classified into k types are to be scheduled on m identical machines without preemption. A machine requires a proper setup taking s time units before processing jobs of a given type. The objective is to minimize the makespan of the resulting schedule. We design and analyze an approximation algorithm that runs in time polynomial in nm and k and computes a solution with an approximation factor that can be made arbitrarily close to \({^3 /_2}\).

Keywords

Scheduling Approximation algorithms Setup times 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allahverdi, A., Gupta, J.N., Aldowaisan, T.: A review of scheduling research involving setup considerations. Omega 27(2), 219–239 (1999)CrossRefGoogle Scholar
  2. 2.
    Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation Schemes for Scheduling on Parallel Machines. Journal of Scheduling 1(1), 55–66 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Correa, J.R., Marchetti-Spaccamela, A., Matuschke, J., Stougie, L., Svensson, O., Verdugo, V., Verschae, J.: Strong LP Formulations for Scheduling Splittable Jobs on Unrelated Machines. In: Lee, J., Vygen, J. (eds.) IPCO 2014. LNCS, vol. 8494, pp. 249–260. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Divakaran, S., Saks, M.E.: An Online Algorithm for a Problem in Scheduling with Set-ups and Release Times. Algorithmica 60(2), 301–315 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hochbaum, D.S., Shmoys, D.B.: Using Dual Approximation Algorithms for Scheduling Problems. Journal of the ACM 34(1), 144–162 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Horowitz, E., Sahni, S.: Exact and Approximate Algorithms for Scheduling Nonidentical Processors. Journal of the ACM 23(2), 317–327 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mäcker, A., Malatyali M., Meyer auf der Heide, F., Riechers, S.: Non-Preemptive Scheduling on Machines with Setup Times. CoRR (2015). 1504.07066
  8. 8.
    Monma, C.L., Potts, C.N.: Analysis of Heuristics for Preemptive Parallel Machine Scheduling with Batch Setup Times. Operations Research 41(5), 981–993 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Potts, C.N., Kovalyov, M.Y.: Scheduling with batching: A review. European Journal of Operational Research 120(2), 228–249 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Schuurman, P., Woeginger, G.J.: Preemptive scheduling with job-dependent setup times. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1999), pp. 759–767. ACM/SIAM (1999)Google Scholar
  11. 11.
    Shachnai, H., Tamir, T.: Polynomial Time Approximation Schemes for Class-Constrained Packing Problems. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 238–249. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  12. 12.
    Shmoys, D.B., Wein, J., Williamson, D.: Scheduling Parallel Machines On-line. In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science (FOCS 1991), pp. 131–140. IEEE (1991)Google Scholar
  13. 13.
    Xavier, E.C., Miyazawa, F.K.: A one-dimensional bin packing problem with shelf divisions. Discrete Applied Mathematics 156(7), 1083–1096 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Xavier, E.C., Miyazawa, F.K.: A Note on Dual Approximation Algorithms for Class Constrained Bin Packing Problems. RAIRO - Theoretical Informatics and Applications 43(2), 239–248 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Alexander Mäcker
    • 1
    Email author
  • Manuel Malatyali
    • 1
  • Friedhelm Meyer auf der Heide
    • 1
  • Sören Riechers
    • 1
  1. 1.Heinz Nixdorf Institute and Computer Science DepartmentUniversity of PaderbornPaderbornGermany

Personalised recommendations