Reconfiguration on Sparse Graphs

  • Daniel Lokshtanov
  • Amer E. MouawadEmail author
  • Fahad Panolan
  • M. S. Ramanujan
  • Saket Saurabh
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)


A vertex-subset graph problem \(\mathcal {Q}\) defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions \(S_s\) and \(S_t\) of size k, whether it is possible to transform \(S_s\) into \(S_t\) by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k. We study reconfiguration variants of two classical vertex-subset problems, namely Independent Set and Dominating Set. We denote the former by \(\textsc {ISR}\) and the latter by \(\textsc {DSR}\). Both \(\textsc {ISR}\) and \(\textsc {DSR}\) are PSPACE-complete on graphs of bounded bandwidth and W[1]-hard parameterized by k on general graphs. We show that \(\textsc {ISR}\) is fixed-parameter tractable parameterized by k when the input graph is of bounded degeneracy or nowhere dense. As a corollary, we answer positively an open question concerning the parameterized complexity of the problem on graphs of bounded treewidth. Moreover, our techniques generalize recent results showing that \(\textsc {ISR}\) is fixed-parameter tractable on planar graphs and graphs of bounded degree. For \(\textsc {DSR}\), we show the problem fixed-parameter tractable parameterized by k when the input graph does not contain large bicliques, a class of graphs which includes degenerate and nowhere dense graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544–556 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bonsma, P.: Rerouting shortest paths in planar graphs. In: Proceedings of the 32nd Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 337–349 (2012)Google Scholar
  3. 3.
    Bose, P., Hurtado, F.: Flips in planar graphs. Computational Geometry 42(1), 60–80 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cereceda, L., van den Heuvel, J., Johnson, M.: Finding paths between 3-colorings. Journal of Graph Theory 67(1), 69–82 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cleary, S., John, K.S.: Rotation distance is fixed-parameter tractable. Information Processing Letters 109(16), 918–922 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dawar, A.: Homomorphism preservation on quasi-wide classes. Journal of Computer and System Sciences 76(5), 324–332 (2010). Workshop on Logic, Language, Information and ComputationMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dawar, A., Kreutzer, S.: Domination problems in nowhere-dense classes of graphs. CoRR (2009). arXiv:0907.42837
  8. 8.
    Diestel, R.: Graph theory, Electronic Edition. Springer (2005)Google Scholar
  9. 9.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1997)Google Scholar
  10. 10.
    Drange, P.G., Dregi, M.S., Fomin, F.V., Kreutzer, S., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Reidl, F., Saurabh, S., Villaamil, F.S., Sikdar, S.: Kernelization and sparseness: the case of dominating set. CoRR (2014). arXiv:1411.4575
  11. 11.
    Erdős, P., Rado, R.: Intersection theorems for systems of sets. Journal of the London Mathematical Society 35, 85–90 (1960)CrossRefGoogle Scholar
  12. 12.
    Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of Boolean satisfiability: computational and structural dichotomies. SIAM Journal on Computing 38(6), 2330–2355 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Grohe, M., Kreutzer, S., Siebertz, S.: Characterisations of nowhere dense graphs. In: Proceedings of the 33rd Annual Conference on Foundations of Software Technology and Theoretical Computer Science, pp. 21–40 (2013)Google Scholar
  14. 14.
    Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pp. 89–98 (2014)Google Scholar
  15. 15.
    Ito, T., Demaine, E.D., Harvey, N.J.A., Papadimitriou, C.H., Sideri, M., Uehara, R., Uno, Y.: On the complexity of reconfiguration problems. Theoretical Computer Science 412(12–14), 1054–1065 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ito, T., Kamiński, M., Demaine, E.D.: Reconfiguration of list edge-colorings in a graph. Discrete Applied Mathematics 160(15), 2199–2207 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ito, T., Kamiński, M., Ono, H.: Fixed-parameter tractability of token jumping on planar graphs. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp. 208–219. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Ito, T., Kamiński, M., Ono, H., Suzuki, A., Uehara, R., Yamanaka, K.: On the parameterized complexity for token jumping on graphs. In: Gopal, T.V., Agrawal, M., Li, A., Cooper, S.B. (eds.) TAMC 2014. LNCS, vol. 8402, pp. 341–351. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  19. 19.
    Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set reconfigurability problems. Theoretical Computer Science 439, 9–15 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lubiw, A., Pathak, V.: Flip distance between two triangulations of a point-set is NP-complete. CoRR (2012). arXiv:1205.2425
  21. 21.
    Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Nesetril, J., de Mendez, P.O.: Structural properties of sparse graphs. In: Building Bridges. Bolyai Society Mathematical Studies, vol. 19, pp. 369–426. Springer, Heidelberg (2008)Google Scholar
  23. 23.
    Nesetril, J., de Mendez, P.O.: First order properties on nowhere dense structures. Journal of Symbolic Logic 75(3), 868–887 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nesetril, J., de Mendez, P.O.: From sparse graphs to nowhere dense structures: Decompositions, independence, dualities and limits. European Congress of Mathematics (2010)Google Scholar
  25. 25.
    Philip, G., Raman, V., Sikdar, S.: Solving dominating set in larger classes of graphs: FPT algorithms and polynomial kernels. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 694–705. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  26. 26.
    Telle, J.A., Villanger, Y.: FPT algorithms for domination in biclique-free graphs. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 802–812. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  27. 27.
    van den Heuvel, J.: The complexity of change. Surveys in Combinatorics 2013(409), 127–160 (2013)zbMATHGoogle Scholar
  28. 28.
    Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth. CoRR (2014). arXiv:1405.0847

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Daniel Lokshtanov
    • 1
  • Amer E. Mouawad
    • 2
    Email author
  • Fahad Panolan
    • 3
  • M. S. Ramanujan
    • 1
  • Saket Saurabh
    • 3
  1. 1.University of BergenBergenNorway
  2. 2.David R. Cheriton School of Computer ScienceUniversity of WaterlooOntarioCanada
  3. 3.Institute of Mathematical SciencesChennaiIndia

Personalised recommendations