Time-Space Trade-offs for Triangulations and Voronoi Diagrams

  • Matias Korman
  • Wolfgang MulzerEmail author
  • André van Renssen
  • Marcel Roeloffzen
  • Paul Seiferth
  • Yannik Stein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)


Let S be a planar n-point set. A triangulation for S is a maximal plane straight-line graph with vertex set S. The Voronoi diagram for S is the subdivision of the plane into cells such that each cell has the same nearest neighbors in S. Classically, both structures can be computed in \(O(n \log n)\) time and O(n) space. We study the situation when the available workspace is limited: given a parameter \(s \in \{1, \dots , n\}\), an s-workspace algorithm has read-only access to an input array with the points from S in arbitrary order, and it may use only O(s) additional words of \(\Theta (\log n)\) bits for reading and writing intermediate data. The output should then be written to a write-only structure. We describe a deterministic s-workspace algorithm for computing a triangulation of S in time \(O(n^2/s + n \log n \log s )\) and a randomized s-workspace algorithm for finding the Voronoi diagram of S in expected time \(O((n^2/s) \log s + n \log s \log ^*s)\).


Convex Hull Success Probability Voronoi Diagram Delaunay Triangulation Simple Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rote, G., Schulz, A.: Memory-constrained algorithms for simple polygons. Comput. Geom. 46(8), 959–969 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Asano, T., Elmasry, A., Katajainen, J.: Priority queues and sorting for read-only data. In: Chan, T.-H.H., Lau, L.C., Trevisan, L. (eds.) TAMC 2013. LNCS, vol. 7876, pp. 32–41. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Asano, T., Kirkpatrick, D.: Time-space tradeoffs for all-nearest-larger-neighbors problems. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 61–72. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for geometric problems. J. of Comput. Geom. 2(1), 46–68 (2011)MathSciNetGoogle Scholar
  5. 5.
    Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.: Space-time trade-offs for stack-based algorithms. Algorithmica 1–33 (2014)Google Scholar
  6. 6.
    Barba, L., Korman, M., Langerman, S., Silveira, R.I.: Computing the visibility polygon using few variables. Comput. Geom. 47(9), 918–926 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geometry: Algorithms and applications, third edition. Springer (2008)Google Scholar
  8. 8.
    Borodin, A., Cook, S.: A time-space tradeoff for sorting on a general sequential model of computation. SIAM J. Comput. 11, 287–297 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Brönnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms and data structures. In: Proc. 20th Annu. ACM Sympos. Comput. Geom. (SoCG), pp. 239–246 (2004)Google Scholar
  10. 10.
    Chan, T.M., Chen, E.Y.: Multi-pass geometric algorithms. Discrete Comput. Geom. 37(1), 79–102 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chazelle, B., Friedman, J.: A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull problem. In: Schulz, A.S., Wagner, D. (eds.) ESA 2014. LNCS, vol. 8737, pp. 284–295. Springer, Heidelberg (2014) Google Scholar
  14. 14.
    Fournier, A., Montuno, D.Y.: Triangulating simple polygons and equivalent problems. ACM Transactions on Graphics 3, 153–174 (1984)CrossRefzbMATHGoogle Scholar
  15. 15.
    Har-Peled, S.: Shortest path in a polygon using sublinear space. To appear in: SoCG 2015Google Scholar
  16. 16.
    Jarvis, R.: On the identification of the convex hull of a finite set of points in the plane. Inform. Process. Lett. 2(1), 18–21 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theoret. Comput. Sci. 12, 315–323 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Munro, J.I., Raman, V.: Selection from read-only memory and sorting with minimum data movement. Theoret. Comput. Sci. 165(2), 311–323 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pagter, J., Rauhe, T.: Optimal time-space trade-offs for sorting. In: Proc. 39th Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pp. 264–268 (1998)Google Scholar
  21. 21.
    Pohl, I.: A minimum storage algorithm for computing the median. Technical Report RC2701, IBM (1969)Google Scholar
  22. 22.
    Savage, J.E.: Models of computation–exploring the power of computing. Addison-Wesley (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Matias Korman
    • 1
  • Wolfgang Mulzer
    • 2
    Email author
  • André van Renssen
    • 1
  • Marcel Roeloffzen
    • 3
  • Paul Seiferth
    • 2
  • Yannik Stein
    • 2
  1. 1.JST, ERATO, Kawarabayashi Large Graph ProjectNational Institute of Informatics (NII)TokyoJapan
  2. 2.Institut für InformatikFreie Universität BerlinBerlinGermany
  3. 3.Tohoku UniversitySendaiJapan

Personalised recommendations