Editing Graphs Into Few Cliques: Complexity, Approximation, and Kernelization Schemes

  • Falk Hüffner
  • Christian Komusiewicz
  • André Nichterlein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)

Abstract

Given an undirected graph G and a positive integer k, the NP-hard Sparse Split Graph Editing problem asks to transform G into a graph that consists of a clique plus isolated vertices by performing at most k edge insertions and deletions; similarly, the \(P_3\)-Bag Editing problem asks to transform G into a graph which is the union of two possibly overlapping cliques. We give a simple linear-time 3-approximation algorithm for Sparse Split Graph Editing, an improvement over a more involved known factor-3.525 approximation. Further, we show that \(P_3\)-Bag Editing is NP-complete. Finally, we present a kernelization scheme for both problems and additionally for the 2-Cluster Editing problem. This scheme produces for each fixed \(\varepsilon \) in polynomial time a kernel of order \(\varepsilon k\). This is, to the best of our knowledge, the first example of a kernelization scheme that converges to a known lower bound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N., Fernau, H.: Kernels: annotated, proper and induced. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 264–275. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  2. 2.
    Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S.: Kernels for feedback arc set in tournaments. J. Comput. System Sci. 77(6), 1071–1078 (2011)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Borgatti, S.P., Everett, M.G.: Models of core/periphery structures. Soc. Networks 21(4), 375–395 (1999)CrossRefGoogle Scholar
  4. 4.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)CrossRefMATHGoogle Scholar
  5. 5.
    Damaschke, P., Mogren, O.: Editing the simplest graphs. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 249–260. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Damaschke, P., Mogren, O.: Editing simple graphs. J. Graph Algorithms Appl. 18(4), 557–576 (2014). doi: 10.7155/jgaa.00337 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science. Springer (2013)Google Scholar
  8. 8.
    Feder, T., Hell, P.: On realizations of point determining graphs, and obstructions to full homomorphisms. Discrete Math. 308(9), 1639–1652 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Fernau, H.: Parameterized algorithmics: A graph-theoretic approach. Wilhelm-Schickard-Institut für Informatik. Universität Tübingen, Habilitationsschrift (2005)Google Scholar
  10. 10.
    Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing with a small number of clusters. J. Comput. System Sci. 80(7), 1430–1447 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory of Computing 2(1), 249–266 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)CrossRefMATHGoogle Scholar
  14. 14.
    Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hell, P.: Graph partitions with prescribed patterns. Eur. J. Combin. 35, 335–353 (2014)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kováč, I., Selečéniová, I., Steinová, M.: On the clique editing problem. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 469–480. Springer, Heidelberg (2014) Google Scholar
  18. 18.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. System Sci. 20(2), 219–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Appl. Math. 113, 109–128 (2001)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Wu, B.Y., Chen, L.-H.: Parameterized algorithms for the 2-clustering problem with minimum sum and minimum sum of squares objective functions. Algorithmica (2014, to appear). doi:10.1007/s00453-014-9874-8Google Scholar
  22. 22.
    Xie, W.: Obstructions to trigraph homomorphisms. Master’s thesis, School of Computing Science. Simon Fraser University, British Columbia, Canada (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Falk Hüffner
    • 1
  • Christian Komusiewicz
    • 1
  • André Nichterlein
    • 1
  1. 1.Institut für Softwaretechnik und Theoretische InformatikTU BerlinBerlinGermany

Personalised recommendations