LP-Based Approximation Algorithms for Facility Location in Buy-at-Bulk Network Design

  • Zachary Friggstad
  • Mohsen RezapourEmail author
  • Mohammad R. Salavatipour
  • José A. Soto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)


We study problems that integrate buy-at-bulk network design into the classical (connected) facility location problem. In such problems, we need to open facilities, build a routing network, and route every client demand to an open facility. Furthermore, capacities of the edges can be purchased in discrete units from K different cable types with costs that satisfy economies of scale. We extend the linear programming framework of Talwar [IPCO 2002] for the single-source buy-at-bulk problem to these variants and prove integrality gap upper bounds for both facility location and connected facility location buy-at-bulk problems. For the unconnected variant we prove an integrality gap bound of O(K), and for the connected version, we get an improved bound of O(1).


Network Design Access Network Facility Location Steiner Tree Core Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bley, A., Rezapour, M.: Approximating connected facility location with buy-at-bulk edge costs via random sampling. In: Proc. of LAGOS 2013, pp. 313–319 (2013)Google Scholar
  2. 2.
    Chekuri, C., Khanna, S., Naor, J.S.: A deterministic algorithm for the cost-distance problem. In: Proc. of SODA 2001, pp. 232–233 (2001)Google Scholar
  3. 3.
    Eisenbrand, F., Grandoni, F., Rothvoß, T., Schäfer, G.: Connected facility location via random facility sampling and core detouring. Journal of Computer and System Sciences 76(8), 709–726 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Garg, N., Khandekar, R., Konjevod, G., Ravi, R., Salman, F.S., Sinha, A.: On the integrality gap of a natural formulation of the single-sink buy-at-bulk network design formulation. In: Proc. of IPCO 2001, pp. 170–184 (2001)Google Scholar
  5. 5.
    Grandoni, F., Rothvoß, T.: Network design via core detouring for problems without a core. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 490–502. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  6. 6.
    Grandoni, F., Rothvoß, T.: Approximation algorithms for single and multi-commodity connected facility location. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 248–260. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  7. 7.
    Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink edge installation problems. In: Proc. of STOC 2001, pp. 383–388 (2001)Google Scholar
  8. 8.
    Gupta, A., Kleinberg, J., Kumar, A., Rastogi, R., Yener, B.: Provisioning a virtual private network: a network design problem for multicommodity flow. In: Proc. of STOC 2001, pp. 389–398 (2001)Google Scholar
  9. 9.
    Jothi, R., Raghavachari, B.: Improved approximation algorithms for the single-sink buy-at-bulk network design problems. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 336–348. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  10. 10.
    Khuller, S., Raghavachari, B., Young, N.: Balancing minimum spanning and shortest path trees. Algorithmica 14(4), 305–321 (1994)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Meyerson, A., Munagala, K., Plotkin, S.: Cost-distance: two metric network design. In: Proc. of FOCS 2000, pp. 624–630 (2000)Google Scholar
  12. 12.
    Ravi, R., Sinha, A.: Integrated logistics: approximation algorithms combining facility location and network design. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 212–229. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  13. 13.
    Shmoys, D.B., Tardos, E., Aardal, K.I.: Approximation algorithms for facility location problems. In: Proc. of STOC 1997, pp. 265–274 (1997)Google Scholar
  14. 14.
    Swamy, C., Kumar, A.: Primal-dual algorithms for connected facility location problems. Algorithmica 40(4), 245–269 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Talwar, K.: The single-sink buy-at-bulk LP has constant integrality gap. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 475–480. Springer, Heidelberg (2002) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zachary Friggstad
    • 1
  • Mohsen Rezapour
    • 2
    Email author
  • Mohammad R. Salavatipour
    • 1
  • José A. Soto
    • 3
  1. 1.Department of Computing ScienceUniversity of AlbertaEdmontonCanada
  2. 2.Institute for MathematicsTU BerlinBerlinGermany
  3. 3.DIM and CMMUniversidad de ChileSantiagoChile

Personalised recommendations