An Efficient and Secure Delegated Multi-authentication Protocol for Mobile Data Owners in Cloud

  • Lifei Wei
  • Lei ZhangEmail author
  • Kai Zhang
  • Mianxiong Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9204)


Due to plenty of cloud-based applications emerging and booming recently, data owners always store their data in cloud and share them to data consumers through cloud servers. For security equirements, data owners are often asked to provide authentication tags to the corresponding data. Data consumers obtain the authenticated data from the cloud and expect the computation on the authenticated data. However, it is impractical for the mobile data owners to be online all the time and provide the authenticated computing results according to various data consumers’ request. To tackle this issue, we propose an efficient and secure delegated multi-authentication protocol for mobile data owners in cloud, which enables the mobile data owners to conditionally delegate signing right to specified cloud servers without exposing the secret signing keys. The cloud servers provide the authentication services when data owners are not available. The security is built on an identity-based multi-proxy signature (IBMPS) scheme, which depends on the cubic residue assumption, equaling to the factorization assumption. Furthermore, our protocol is efficient compared to the pairing based schemes and the overhead is almost independent of the number of cloud servers.


Authenticated computing Mobile data owner Delegated multi-authentication Multi-proxy signature Cloud computing 


  1. 1.
    Dong, M., Li, H., Ota, K., Zhu, H.: Hvsto: efficient privacy preserving hybrid storage in cloud data center. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2014), pp. 529–534 (2014)Google Scholar
  2. 2.
    Dong, M., Li, H., Ota, K., Yang, L.T., Zhu, H.: Multicloud-based evacuation services for emergency management. IEEE Cloud Comput. 1(4), 50–59 (2014)CrossRefGoogle Scholar
  3. 3.
    Wei, L., Zhu, H., Cao, Z., Dong, X., Jia, W., Chen, Y., Vasilakos, A.V.: Security and privacy for storage and computation in cloud computing. Inf. Sci. 258, 371–386 (2014)CrossRefGoogle Scholar
  4. 4.
    Wang, C., Chow, S.S., Wang, Q., Ren, K., Lou, W.: Privacy-preserving public auditing for secure cloud storage. IEEE Trans. Comput. 62(2), 362–375 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yuan, J., Yu, S.: Efficient public integrity checking for cloud data sharing with multi-user modification. In: INFOCOM 2014, pp. 2121–2129 (2014)Google Scholar
  6. 6.
    Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., shelat, A., Waters, B.: Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 1–20. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  7. 7.
    Jia, W., Zhu, H., Cao, Z., Wei, L., Lin, X.: SDSM: a secure data service mechanism in mobile cloud computing. In: IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS 2011), pp. 1060–1065 (2011)Google Scholar
  8. 8.
    Boldyreva, A., Palacio, A., Warinschi, B.: Secure proxy signature schemes for delegation of signing rights. J. Cryptology 25(1), 57–115 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  10. 10.
    Wang, Z., Sun, G., Chen, D.: A new definition of homomorphic signature for identity management in mobile cloud computing. J. Comput. Syst. Sci. 80(3), 546–553 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Yuan, J., Yu, S.: Flexible and publicly verifiable aggregation query for outsourced databases in cloud. In: IEEE CNS 2013, pp. 520–524 (2013)Google Scholar
  12. 12.
    Cao, F., Cao, Z.: A secure identity-based multi-proxy signature scheme. Comput. Electr. Eng. 35(1), 86–95 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Sahu, R.A., Padhye, S.: Provable secure identity-based multi-proxy signature scheme. Int. J. Commun. Syst. 28(3), 497–512 (2015)CrossRefGoogle Scholar
  14. 14.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2009)zbMATHGoogle Scholar
  15. 15.
    Wang, Z., Wang, L., Zheng, S., Yang, Y., Hu, Z.: Provably secure and efficient identity-based signature scheme based on cubic residues. Int. J. Netw. Secur. 14(1), 33–38 (2012)Google Scholar
  16. 16.
    He, D., Chen, J., Zhang, R.: An efficient and provably-secure certificateless signature scheme without bilinear pairings. Int. J. Commun. Syst. 25(11), 1432–1442 (2012)CrossRefGoogle Scholar
  17. 17.
    Li, X., Chen, K.: Id-based multi-proxy signature, proxy multi-signature and multi-proxy multi-signature schemes from bilinear pairings. Appl. Math. Comput. 169(1), 437–450 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature schemes based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 480–498. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  19. 19.
    Joye, M., Libert, B.: Efficient cryptosystems from \(2^{k}\)-th power residue symbols. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 76–92. Springer, Heidelberg (2013) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lifei Wei
    • 1
    • 2
  • Lei Zhang
    • 1
    Email author
  • Kai Zhang
    • 3
  • Mianxiong Dong
    • 4
  1. 1.College of Information TechnologyShanghai Ocean UniversityShanghaiChina
  2. 2.State Key Laboratory of Networking and Switching TechnologyBeijing University of Posts and TelecommunicationsBeijingChina
  3. 3.Department of Computer Science and TechnologyEast China Normal UniversityShanghaiChina
  4. 4.Department of Information and Electronic Engineering, Muroran Institute of TechnologyMuroranJapan

Personalised recommendations