Advertisement

Recommender Systems and Linked Open Data

  • Tommaso Di NoiaEmail author
  • Vito Claudio Ostuni
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9203)

Abstract

The World Wide Web is moving from a Web of hyper-linked documents to a Web of linked data. Thanks to the Semantic Web technological stack and to the more recent Linked Open Data (LOD) initiative, a vast amount of RDF data have been published in freely accessible datasets connected with each other to form the so called LOD cloud. As of today, we have tons of RDF data available in the Web of Data, but only a few applications really exploit their potential power. The availability of such data is for sure an opportunity to feed personalized information access tools such as recommender systems. We present an overview on recommender systems and we sketch how to use Linked Open Data to build a new generation of semantics-aware recommendation engines.

Keywords

Recommender System User Profile Collaborative Filter SPARQL Query Link Open Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Adomavicius, G., Kwon, Y.: Improving aggregate recommendation diversity using ranking-based techniques. IEEE Trans. Knowl. Data Eng. 24(5), 896–911 (2012)CrossRefGoogle Scholar
  2. 2.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  3. 3.
    Anand, S.S., Kearney, P., Shapcott, M.: Generating semantically enriched user profiles for web personalization. ACM Trans. Internet Technol. 7(4), October 2007Google Scholar
  4. 4.
    Ayala, V.A.A., Przyjaciel-Zablocki, M., Hornung, T., Schätzle, A., Lausen, G.: Extending SPARQL for recommendations. In: Proceedings of Semantic Web Information Management on Semantic Web Information Management, SWIM 2014, pp. 1:1–1:8. ACM, New York (2014)Google Scholar
  5. 5.
    Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts and Technology behind Search. Addison-Wesley Professional, Boston (2011)Google Scholar
  6. 6.
    Balabanović, M., Shoham, Y.: Fab: Content-based, collaborative recommendation. Commun. ACM 40(3), 66–72 (1997)CrossRefGoogle Scholar
  7. 7.
    Bellogín, A.: Performance prediction and evaluation in recommender systems: an information retrieval perspective. Ph.D. thesis, Escuela Politécnica Superior Departamento de Ingeniería Informática (2012)Google Scholar
  8. 8.
    Bellogín, A., Cantador, I., Castells, P.: A study of heterogeneity in recommendations for a social music service. In: Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2010, pp. 1–8. ACM, New York (2010)Google Scholar
  9. 9.
    Bellogin, A., Castells, P., Cantador, I.: Precision-oriented evaluation of recommender systems: an algorithmic comparison. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 333–336. ACM, New York (2011)Google Scholar
  10. 10.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semant. Web Inf. Syst 5(3), 1–22 (2009)CrossRefGoogle Scholar
  11. 11.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1247–1250. ACM, New York (2008)Google Scholar
  12. 12.
    Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI 1998, pp. 43–52 (1998)Google Scholar
  13. 13.
    Bridge, D., Göker, M.H., McGinty, L., Smyth, B.: Case-based recommender systems. Knowl. Eng. Rev. 20(3), 315–320 (2005)CrossRefGoogle Scholar
  14. 14.
    Burke, R.: Knowledge-based recommender systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Science, vol. 69, pp. 181–201. CRC Press, Boca Raton (2000)Google Scholar
  15. 15.
    Burke, R.D.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Burke, R.: Hybrid web recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  17. 17.
    Cantador, I., Bellogín, A., Castells, P.: A multilayer ontology-based hybrid recommendation model. AI Commun. Special Issue Recomm. Syst. 21(2—-3), 203–210 (2008)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cantador, I., Brusilovsky, P., Kuflik, T.: 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In: Proceedings of the 5th ACM Conference on Recommender systems, RecSys 2011. ACM, New York (2011)Google Scholar
  19. 19.
    Colucci, S., Di Noia, T., Di Sciascio, E., Donini, F.M., Ragone, A.: Knowledge elicitation for query refinement in a semantic-enabled e-marketplace. In: Proceedings of the 7th International Conference on Electronic Commerce, ICEC 2005, pp. 685–691. ACM, New York (2005)Google Scholar
  20. 20.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on Top-N recommendation tasks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, RecSys 2010, pp. 39–46. ACM, New York (2010)Google Scholar
  21. 21.
    Dai, H., Mobasher, B.: A road map to more effective web personalization: integrating domain knowledge with web usage mining. In: Proceedings of the International Conference on Internet Computing, IC 2003, Las Vegas, Nevada, USA, 23–26 June 2003, vol. 1, pp. 58–64 (2003)Google Scholar
  22. 22.
    Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits wordnet-based user profiles for neighborhood formation. User Model. User-Adapt. Inter. 17(3), 217–255 (2007)CrossRefGoogle Scholar
  23. 23.
    Deshpande, M., Karypis, G.: Item-based Top-N recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)CrossRefGoogle Scholar
  24. 24.
    Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-monotonic reasoning: a description logic approach. J. Artif. Int. Res. 29(1), 269–307 (2007)zbMATHGoogle Scholar
  25. 25.
    Dojchinovski, M., Vitvar, T.: Personalised access to linked data. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS, vol. 8876, pp. 121–136. Springer, Heidelberg (2014) Google Scholar
  26. 26.
    Felfernig, A., Burke, R.: Constraint-based recommender systems: technologies and research issues. In: Proceedings of the 10th International Conference on Electronic Commerce, ICEC 2008, pp. 3:1–3:10. ACM, New York (2008)Google Scholar
  27. 27.
    Fernández-Tobías, I., Cantador, I., Kaminskas, M., Ricci, F.: A generic semantic-based framework for cross-domain recommendation. In: Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems, HetRec 2011, pp. 25–32. ACM, New York (2011)Google Scholar
  28. 28.
    Heitmann, B., Hayes, C.: Using linked data to build open, collaborative recommender systems. Linked data meets artificial intelligence. In: AAAI Spring Symposium (2010)Google Scholar
  29. 29.
    Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)CrossRefGoogle Scholar
  30. 30.
    Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems and the next-generation web. In: Recommender Systems, pp. 253–288. Cambridge University Press, Cambridge (2010)Google Scholar
  31. 31.
    Khrouf, H., Troncy, R.: Hybrid event recommendation using linked data and user diversity. In: Proceedings of the 7th ACM Conference on Recommender Systems, RecSys 2013, pp. 185–192. ACM, New York (2013)Google Scholar
  32. 32.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434. ACM, New York (2008)Google Scholar
  33. 33.
    Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)CrossRefGoogle Scholar
  34. 34.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web J. 6(2), 167–195 (2015)Google Scholar
  35. 35.
    Lommatzsch, A., Plumbaum, T., Albayrak, S.: A linked dataverse knows better: boosting recommendation quality using semantic knowledge. In: Proceedings of the 5th International Conference on Advances in Semantic Processing, pp. 97–103. IARIA, Wilmington (2011)Google Scholar
  36. 36.
    Lops, P., Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer, USA (2011)CrossRefGoogle Scholar
  37. 37.
    Maidel, V., Shoval, P., Shapira, B., Taieb-Maimon, M.: Evaluation of an ontology-content based filtering method for a personalized newspaper. In: Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 2008, Lausanne, Switzerland, 23–25 October 2008, pp. 91–98 (2008)Google Scholar
  38. 38.
    Marie, N., Corby, O., Gandon, F., Ribière, M.: Composite interests’ exploration thanks to on-the-fly linked data spreading activation. In: Proceedings of the 24th ACM Conference on Hypertext and Social Media, HT 2013, pp. 31–40. ACM, New York (2013)Google Scholar
  39. 39.
    McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy metrics have hurt recommender systems. In: CHI 2006 Extended Abstracts on Human Factors in Computing Systems, CHI EA 2006, pp. 1097–1101. ACM, New York (2006)Google Scholar
  40. 40.
    Middleton, S.E., Shadbolt, N.R., De Roure, D.C.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22, 54–88 (2004)CrossRefGoogle Scholar
  41. 41.
    Mobasher, B., Jin, X., Zhou, Y.: Semantically enhanced collaborative filtering on the web. In: Berendt, B., Hotho, A., Mladenič, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF 2003. LNCS (LNAI), vol. 3209, pp. 57–76. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  42. 42.
    Musto, C., Semeraro, G., Lops, P., de Gemmis, M.: Combining distributional semantics and entity linking for context-aware content-based recommendation. In: Dimitrova, V., Kuflik, T., Chin, D., Ricci, F., Dolog, P., Houben, G.-J. (eds.) UMAP 2014. LNCS, vol. 8538, pp. 381–392. Springer, Heidelberg (2014) Google Scholar
  43. 43.
    Narducci, F., Palmonari, M., Semeraro, G.: Cross-language semantic retrieval and linking of E-Gov services. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 130–145. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  44. 44.
    Passant, A.: Measuring semantic distance on linking data and using it for resources recommendations. In: Proceedings of the AAAI Spring Symposium “Linked Data Meets Artificial Intelligence”, vol. 3 (2010)Google Scholar
  45. 45.
    Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification ofinteresting web sites. Mach. Learn. 27(3), 313–331 (1997)CrossRefGoogle Scholar
  46. 46.
    Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  47. 47.
    Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: bayesian personalized ranking from implicit feedback. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 452–461. AUAI Press, Arlington (2009)Google Scholar
  48. 48.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open architecture for collaborative filtering of netnews. In: CSCW 1994, Proceedings of the Conference on Computer Supported Cooperative Work, Chapel Hill, NC, USA, 22–26 October 1994, pp. 175–186 (1994)Google Scholar
  49. 49.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems Handbook. Springer, USA (2011) zbMATHGoogle Scholar
  50. 50.
    Rowe, M.: SemanticSVD++: incorporating semantic taste evolution for predicting ratings. In: 2014 IEEE/WIC/ACM International Conferences on Web Intelligence, WI 2014 (2014)Google Scholar
  51. 51.
    Rowe, M.: Transferring semantic categories with vertex kernels: recommendations with SemanticSVD++. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 341–356. Springer, Heidelberg (2014) Google Scholar
  52. 52.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  53. 53.
    Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommendations. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2002, pp. 253–260. ACM, New York (2002)Google Scholar
  54. 54.
    Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part I. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014) Google Scholar
  55. 55.
    Semeraro, G., Degemmis, M., Lops, P., Basile, P.: Combining learning and word sense disambiguation for intelligent user profiling. In: IJCAI 2007, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007, pp. 2856–2861 (2007)Google Scholar
  56. 56.
    Semeraro, G., Lops, P., Basile, P., de Gemmis, M.: Knowledge infusion into content-based recommender systems. In: Proceedings of the Third ACM Conference on Recommender Systems, RecSys 2009, pp. 301–304, ACM, New York (2009)Google Scholar
  57. 57.
    Shen, W., Wang, J., Luo, P., Wang, M.: Linden: linking named entities with knowledge base via semantic knowledge. In: Proceedings of the 21st International Conference on World Wide Web, WWW 2012, pp. 449–458. ACM, New York (2012)Google Scholar
  58. 58.
    Stankovic, M., Breitfuss, W., Laublet, P.: Linked-data based suggestion of relevant topics. In: Proceedings of the 7th International Conference on Semantic Systems, I-Semantics 2011, pp. 49–55. ACM, New York (2011)Google Scholar
  59. 59.
    Steck, H.: Evaluation of recommendations: rating-prediction and ranking. In: RecSys, pp. 213–220 (2013)Google Scholar
  60. 60.
    Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for recommender systems. In: Proceedings of the Fifth ACM Conference on Recommender Systems, RecSys 2011, pp. 109–116. ACM, New York (2011)Google Scholar
  61. 61.
    Webb, G.I., Pazzani, M.J., Billsus, D.: Machine learning for user modeling. User Model. User-Adap. Inter. 11(1–2), 19–29 (2001)CrossRefzbMATHGoogle Scholar
  62. 62.
    Zanker, M., Jessenitschnig, M., Schmid, W.: Preference reasoning with soft constraints in constraint-based recommender systems. Constraints 15(4), 574–595 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Ziegler, C.-N., Lausen, G., Schmidt-Thieme, L.: Taxonomy-driven computation of product recommendations. In: Proceedings of the Thirteenth ACM International Conference on Information And Knowledge Management, CIKM 2004, pp. 406–415. ACM, New York (2004)Google Scholar
  64. 64.
    Ziegler, C.-N., McNee, S.M., Konstan, J.A., Lausen, G.: Improving recommendation lists through topic diversification. In: Proceedings of the 14th International Conference on World Wide Web, WWW 2005, pp. 22–32. ACM, New York (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.SisInf LabPolytechnic University of BariBariItaly
  2. 2.Pandora Media Inc.OaklandUSA

Personalised recommendations