Advertisement

Web Stream Reasoning: From Data Streams to Actionable Knowledge

  • Alessandra MileoEmail author
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9203)

Abstract

A fast growing torrent of data is being created by companies, social networks, mobile phones, smart homes, public transport vehicles, healthcare devices, and other modern infrastructures. Being able to unlock the potential hidden in this torrent of data would open unprecedented opportunities to improve our daily lives that were not possible before. Advances in the Internet of Things (IoT), Semantic Web and Linked Data research and standardization have already established formats and technologies for representing, sharing and re-using (dynamic) knowledge on the Web. However, transforming data into actionable knowledge requires to cater for (i) automatic mechanisms to discover and integrate heterogeneous data streams on the fly and extract patterns for applications to use, (ii) concepts and algorithms for context and quality-aware integration of semantic data streams, and (iii) the ability to synthesize domain-driven commonsense knowledge (and answers derived from it) with expressive inference that can capture decision analytics in a scalable way. In the first part of this lecture we will characterize the main approaches to stream processing for the Web of Data, showing how data quality and context can guide semantic integration. In the second part of this lecture we will focus on rule-based Web Stream Reasoning and illustrate how scalability and uncertainty issues can be addressed in a rule-based approach. We will discuss new challenges and opportunities in Web Stream Reasoning, briefly considering economical and societal impact in real application scenarios in a smart city context, and we will conclude by providing a brief overview of ongoing research and standardization activities in this area.

Keywords

Stream reasoning Continuous query processing Quality of information Logic programming Semantic web Inductive logic reasoning 

References

  1. 1.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic. N.: ET-SPARQL: a unified language for event processing and stream reasoning. In: Proceedings of the 20th WWW Conference, pp. 635–644, ACM (2011)Google Scholar
  2. 2.
    Anicic, D., Rudolph, S., Fodor, P., Stojanovic, N.: Stream reasoning and complex event processing in etalis. Semant. Web 3(4), 397–407 (2011)Google Scholar
  3. 3.
    Antoniou, G., Batsakis, S., Tachmazidis, I.: Large-scale reasoning with (semantic) data. In: Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS 2014), p. 1, ACM (2014)Google Scholar
  4. 4.
    Baral, C.: Knowledge Representation Reasoning and Declarative Problem Solving. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  5. 5.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying rdf streams with C-SPARQL. SIGMOD Rec. 39(1), 20–26 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Bolles, Andre, Grawunder, Marco, Jacobi, Jonas: Streaming SPARQL - Extending SPARQL to process data streams. In: Bechhofer, Sean, Hauswirth, Manfred, Hoffmann, Jörg, Koubarakis, Manolis (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  7. 7.
    Calbimonte, J., Jeung, H., Corcho, Ó., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  8. 8.
    Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.: Monitoring streams: a new class of data management applications. In: VLDB 2002, pp. 215–226, VLDB Endowment (2002)Google Scholar
  9. 9.
    Della Valle, E., Ceri, S., Barbieri, D.F., Braga, D., Campi, A.: A First Step Towards Stream Reasoning. In: Domingue, J., Fensel, D., Traverso, P. (eds.) FIS 2008. LNCS, vol. 5468, pp. 72–81. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  10. 10.
    Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)CrossRefGoogle Scholar
  11. 11.
    Della Valle, E., Schlobach, S., Krötzsch, M., Bozzon, A., Ceri, S., Horrocks, I.: Order matters! harnessing a world of orderings for reasoning over massive data. J. Semant. Web 4(2), 219–231 (2012)Google Scholar
  12. 12.
    Do, Thang M., Loke, Seng W., Liu, Fei: Answer set programming for stream reasoning. In: Butz, Cory, Lingras, Pawan (eds.) Canadian AI 2011. LNCS, vol. 6657, pp. 104–109. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  13. 13.
    Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126, pp. 93–127. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  14. 14.
    Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Dlv-hex: Dealing with semantic web under answer-set programming. In: The Proceedings of the 4th International Semantic Web Conference (2005)Google Scholar
  15. 15.
    Gao, F., Curry, E., Ali, M.I., Bhiri, S., Mileo, A.: QoS-Aware complex event service composition and optimization using genetic algorithms. In: Franch, X., Ghose, A.K., Lewis, G.A., Bhiri, S. (eds.) ICSOC 2014. LNCS, vol. 8831, pp. 386–393. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  16. 16.
    Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Answer set programming for stream reasoning (2013). CoRR abs/1301.1392
  17. 17.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming, vol. 161 (1988)Google Scholar
  18. 18.
    Germano, S., Pham, T.-L., Mileo, A.: Web stream reasoning in practice: on the expressivity vs. scalability tradeoff. In: Web Reasoning and Rule Systems - 9th International Conference, RR 2014, Berlin, Germany, 5–6 August 2015, page to appear. Proceedings (2015)Google Scholar
  19. 19.
    W. S. R. in Practice: on the Expressivity vs. Scalability tradeoff. Stefano germano and thu-le pham and alessandra mkileo. In: Web Reasoning and Rule Systems - 9th International Conference, RR 2015, Berlin, Germany, 4–5 August 2015, page to appear. Proceedings (2015)Google Scholar
  20. 20.
    Komazec, S., Cerri, D., Fensel, D.: Sparkwave: continuous schema-enhanced pattern matching over rdf data streams. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, pp.58–68, ACM (2012)Google Scholar
  21. 21.
    Lanzanasto, N., Komazec, S., Toma, I.: Reasoning over real time data streams (2012). http://www.envision-project.eu/wp-content/uploads/2012/11/D4-8_v1-0.pdf
  22. 22.
    Le-Phuoc, D., Dao-Tran, M., Xavier Parreira, J., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  23. 23.
    Le-Phuoc, D., Xavier Parreira, J., Hauswirth, M.: Linked stream data processing. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 245–289. Springer, Heidelberg (2012) Google Scholar
  24. 24.
    Lifschitz, V.: Answer set programming and plan generation. AI 138(1), 39–54 (2002)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Madden, S., Shah, M., Hellerstein, J.M., Raman, V.: Continuously adaptive continuous queries over streams. In: 2002 ACM SIGMOD International Conference on Management of Data, pp. 49–60, ACM, New York (2002)Google Scholar
  26. 26.
    Mahambre, S.P., Kumar, M., Bellur, U.: A taxonomy of qos-aware, adaptive event-dissemination middleware. IEEE Internet Comput. 11(4), 35–44 (2007)CrossRefGoogle Scholar
  27. 27.
    Margara, A., Urbani, J., van Harmelen, F., Bal, H.: Streaming the web: Reasoning over dynamic data. Web Semant.: Sci. Serv. Agents World Wide Web 25, 24–44 (2014)CrossRefGoogle Scholar
  28. 28.
    Mileo, A., Abdelrahman, A., Policarpio, S., Hauswirth, M.: StreamRule: A nonmonotonic stream reasoning system for the semantic web. In: Faber, W., Lembo, D. (eds.) RR 2013. LNCS, vol. 7994, pp. 247–252. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Nickles, M., Mileo, A.: Probabilistic inductive logic programming based on answer set programming (2014). CoRR abs/1405.0720
  30. 30.
    Nickles, M., Mileo, A.: Web stream reasoning using probabilistic answer set programming. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 197–205. Springer, Heidelberg (2014) Google Scholar
  31. 31.
    Paschke, A.: Rules and logic programming for the web. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 326–381. Springer, Heidelberg (2011) Google Scholar
  32. 32.
    Paschke, A., Boley, H.: Rule responder: Rule-based agents for the semant. pragmatic web. Int. J. Artif. Intell. Tools 20(6), 1043–1081 (2011)CrossRefGoogle Scholar
  33. 33.
    Sheth, A., Henson, C., Sahoo, S.S.: Semantic sensor web. IEEE Internet Comput. 12(4), 78–83 (2008)CrossRefGoogle Scholar
  34. 34.
    Stuckenschmidt, H., Ceri, S., Della Valle, E., Van Harmelen, F., di Milano, P.: Towards expressive stream reasoning. In: Proceedings of the Dagstuhl Seminar on Semantic Aspects of Sensor Networks (2010)Google Scholar
  35. 35.
    Tachmazidis, I., Antoniou, G., Faber, W.: Efficient computation of the well-founded semantics over big data (2014). CoRR abs/1405.2590
  36. 36.
    Teymourian, K., Rohde, M., Paschke, A.: Fusion of background knowledge and streams of events. In: Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems, DEBS 2012, pp. 302–313. ACM, New York (2012)Google Scholar
  37. 37.
    Valle, E.D., Ceri, S., Harmelen, F.V., Fensel, D.: It’s a streaming world! reasoning upon rapidly changing information. IEEE Intell. Syst. 24(6), 83–89 (2009)CrossRefGoogle Scholar
  38. 38.
    Zaino, J.: Big data and the semantic web: Their paths will cross. http://semanticweb.com/big-data-and-the-semantic-web-their-paths-will-cross_b32027

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Insight Centre for Data AnalyticsNational University of IrelandGalwayIreland

Personalised recommendations