Advertisement

MWCNT and CNF Cementitious Nanocomposites for Enhanced Strength and Toughness

  • P. A. Danoglidis
  • M. G. Falara
  • M. K. Katotriotou
  • M. S. Konsta-Gdoutos
  • E. E. Gdoutos
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Cementitious nanocomposites reinforced with carbon fibers at the nanoscale were fabricated and tested, exhibiting remarkably improved mechanical and fracture properties. The cementitious nanocomposites were reinforced with well dispersed multiwall carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs). A dispersion method involving the application of ultrasonic energy and the use of a superplasticizer was employed to prepare the nanoscale fiber suspensions. Flexural strength and Young’s modulus were experimentally investigated and compared with similarly processed reference cement based mixes without the nano-reinforcement. The nanocomposites’ fracture properties were also determined using the two parameter fracture model (TPFM). The excellent reinforcing capability of MWCNTs and CNFs is demonstrated by a significant improvement in flexural strength (87 % for MWCNTs and 106 % for CNFs reinforcement), Young’s modulus (100 %), and fracture toughness (86 % for MWCNTs and 119 % for CNFs reinforcement).

Keywords

Multi-walled carbon nanotubes Carbon nanofibers Mortars Fracture mechanics Young’s modulus 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the National Strategic Reference Framework (NSRF) Research Funding Program “Thales-Democritus University of Thrace-Center for Multifunctional Nanocomposite Construction Materials” (MIS379496) funded by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning”.

References

  1. 1.
    Belytschko, T., Xiao, S.P., Schatz, G.C., Ruoff, R.: Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235430–235437 (2002)CrossRefGoogle Scholar
  2. 2.
    Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S.: Highly dispersed carbon nanotube-reinforced cement-based materials. US Patent and Trademark Office, United States Patent Application 20090229494, Publication number WO/2009/099640 (2009)Google Scholar
  3. 3.
    Hersam, Μ.C., Seo, J.-W.T., Shah, S.P., Konsta-Gdoutos, M.S., Metaxa, Z.S.: Highly Concentrated Carbon Nanotube Suspensions for Cementitious Materials and Method of Reinforcing Such Materials, Publication number US8865107 B2 and US20120042806 A1 (2014)Google Scholar
  4. 4.
    Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P.: Highly dispersed carbon nanotubes reinforced cement based materials. Cem. Concr. Res. 40, 1052–1059 (2010)CrossRefGoogle Scholar
  5. 5.
    Metaxa, Z.S., Konsta-Gdoutos, M.S., Shah, S.P.: Carbon nanotubes reinforced concrete, American Concrete Institute. ACI Spec. Publ. 267 SP, 11–20 (2009)Google Scholar
  6. 6.
    Metaxa, Z.S., Konsta-Gdoutos, M.S., Shah, S.P.: Mechanical properties and nanostructure of cement-based materials reinforced with carbon nanofibers and polyvinyl alcohol (PVA) microfibers, American Concrete Institute. ACI Spec. Publ. 270 SP, 115–126 (2010)Google Scholar
  7. 7.
    Konsta-Gdoutos, M.S., Metaxa, Z.S., Shah, S.P.: Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem. Concr. Compos. 32(2), 110–115 (2010)CrossRefGoogle Scholar
  8. 8.
    Metaxa, Z.S., Konsta-Gdoutos, M.S., Shah, S.P.: Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency. Cem. Concr. Compos. 32(2), 110–115 (2010)CrossRefGoogle Scholar
  9. 9.
    Gdoutos, E.E.: Fracture Mechanics: An Introduction, 2nd edn. Springer, Dordrecht (2005)zbMATHGoogle Scholar
  10. 10.
    Jenq, Y., Shah, S.P.: Two parameter fracture model for concrete. J. Eng. Mech. 111, 1227–1241 (1985)CrossRefGoogle Scholar
  11. 11.
    Siddique, R., Mehta, A.: Effect of carbon nanotubes on properties of cement mortars. Constr. Build. Mater. 50, 116–129 (2014)CrossRefGoogle Scholar
  12. 12.
    Yazdani, N., Mohanam, V.: Carbon nano-tube and nano-fiber in cement mortar: effect of dosage rate and water-cement ratio. Int. J. Mater. Sci. 4(2), 45–52 (2014)CrossRefGoogle Scholar
  13. 13.
    Sobolkina, A., Mechtcherine, V., Khavrus, V., Maier, D., Mende, M., Ritschel, M., Leonhardt, A.: Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cem. Concr. Compos. 34, 1104–1113 (2012)CrossRefGoogle Scholar
  14. 14.
    Esmaeili, J., Mohammadjafari, A.R.: Increasing flexural strength and toughness of cement mortar using multi-walled carbon nanotubes. Int. J. Nano Dimens. 5(4), 399–407 (2014)Google Scholar
  15. 15.
    Lawrence, J.G., Berhan, L.M., Nadarajah, A.: Structureal transformation of vapor grown carbon nanofiber studied by HRTEM. J Nanoparticle. Res. 10, 1155–1167 (2008)CrossRefGoogle Scholar
  16. 16.
    Tibbetts, G.G., Lake, M.L., Strong, K.L., Rice, B.P.: A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol. 67, 1709–1718 (2007)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • P. A. Danoglidis
    • 1
  • M. G. Falara
    • 1
  • M. K. Katotriotou
    • 1
  • M. S. Konsta-Gdoutos
    • 1
  • E. E. Gdoutos
    • 1
  1. 1.Department of Civil EngineeringDemocritus University of ThraceXanthiGreece

Personalised recommendations