Towards a Universal Approach for the Finite Departure Problem in Overlay Networks

  • Andreas Koutsopoulos
  • Christian Scheideler
  • Thim StrothmannEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9212)


A fundamental problem for overlay networks is to safely exclude leaving nodes, i.e., the nodes requesting to leave the overlay network are excluded from it without affecting its connectivity. There are a number of studies for safe node exclusion if the overlay is in a well-defined state, but almost no formal results are known for the case in which the overlay network is in an arbitrary initial state, i.e., when looking for a self-stabilizing solution for excluding leaving nodes. We study this problem in two variants: the Finite Departure Problem (\(\mathcal {FDP}\)) and the Finite Sleep Problem (\(\mathcal {FSP}\)). In the \(\mathcal {FDP}\) the leaving nodes have to irrevocably decide when it is safe to leave the network, whereas in the \(\mathcal {FSP}\), this leaving decision does not have to be final: the nodes may resume computation when woken up by an incoming message. We are the first to present a self-stabilizing protocol for the \(\mathcal {FDP}\) and the \(\mathcal {FSP}\) that can be combined with a large class of overlay maintenance protocols so that these are then guaranteed to safely exclude leaving nodes from the system from any initial state while operating as specified for the staying nodes. In order to formally define the properties these overlay maintenance protocols have to satisfy, we identify four basic primitives for manipulating edges in an overlay network that might be of independent interest.


Overlay Network Universal Approach Incoming Message Legitimate State Basic Primitive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albrecht, K., Kuhn, F., Wattenhofer, R.: Dependable Peer-to-Peer Systems Withstanding Dynamic Adversarial Churn. In: Kohlas, J., Meyer, B., Schiper, A. (eds.) Dependable Systems: Software, Computing, Networks. LNCS, vol. 4028, pp. 275–294. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay networks. In: SOSP, pp. 131–145 (2001)Google Scholar
  3. 3.
    Angluin, D., Fischer, M.J., Jiang, H.: Stabilizing Consensus in Mobile Networks. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 37–50. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Aspnes, J., Shah, G.: Skip graphs. ACM Transactions on Algorithms 3(4), 37 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Awerbuch, B., Scheideler, C.: The hyperring: a low-congestion deterministic data structure for distributed environments. In: SODA, pp. 318–327 (2004)Google Scholar
  6. 6.
    Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory Comput. Syst. 45(2), 234–260 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks with the transitive closure framework. Theor. Comput. Sci. 512, 2–14 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Bhargava, A., Kothapalli, K., Riley, C., Scheideler, C., Thober, M.: Pagoda: a dynamic overlay network for routing, data management, and multicasting. In: SPAA, pp. 170–179 (2004)Google Scholar
  9. 9.
    Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed systems. J. ACM 43(2), 225–267 (1996)Google Scholar
  10. 10.
    Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic skip list and skip graph. Theor. Comput. Sci. 428, 18–35 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Doerr, B., Goldberg, LA., Minder, L., Sauerwald, T., Scheideler, C.: Stabilizing consensus with the power of two choices. In: SPAA, pp. 149–158 (2011)Google Scholar
  12. 12.
    Dolev, D., Hoch, E.N., van Renesse, R.: Self-stabilizing and Byzantine-Tolerant Overlay Network. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS, vol. 4878, pp. 343–357. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  13. 13.
    Dolev, S., Tzachar, N.: Spanders: Distributed spanning expanders. Sci. Comput. Program. 78(5), 544–555 (2013)CrossRefzbMATHGoogle Scholar
  14. 14.
    Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Foreback, D., Koutsopoulos, A., Nesterenko, M., Scheideler, C., Strothmann, T.: On Stabilizing Departures in Overlay Networks. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol. 8756, pp. 48–62. Springer, Heidelberg (2014) Google Scholar
  16. 16.
    Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Time Complexity of Distributed Topological Self-stabilization: The Case of Graph Linearization. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 294–305. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  17. 17.
    Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet: A scalable overlay network with practical locality properties. In: USENIX Symposium on Internet Technologies and Systems ((2003)Google Scholar
  18. 18.
    Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. Distributed Computing 25(4), 261–278 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    Herault, T., Lemarinier, P., Peres, O., Pilard, L., Beauquier, J.: Brief Announcement: Self-stabilizing Spanning Tree Algorithm for Large Scale Systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 574–575. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  20. 20.
    Jacob, R., Richa, A.W., Scheideler, C., Schmid, S., Täubig, H.: A distributed polylogarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140 (2009)Google Scholar
  21. 21.
    Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: Towards higher-dimensional topological self-stabilization: A distributed algorithm for delaunay graphs. Theor. Comput. Sci. 457, 137–148 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord overlay network. In: SPAA, pp. 235–244 (2011)Google Scholar
  23. 23.
    Kuhn, F., Schmid, S., Wattenhofer, R.: Towards worst-case churn resistant peer-to-peer systems. Distributed Computing 22(4), 249–267 (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic emulation of the butterfly. In: PODC, pp. 183–192 (2002)Google Scholar
  25. 25.
    Nor, R.M., Nesterenko, M., Scheideler, C.: Corona: A Stabilizing Deterministic Message-Passing Skip List. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 356–370. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  26. 26.
    Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In: IPDPS, pp. 1–12 (2008)Google Scholar
  27. 27.
    Scheideler, C.: How to spread adversarial nodes?: rotate! In: STOC, pp. 704–713 (2005)Google Scholar
  28. 28.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Frans Kaashoek, M., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for Internet applications. IEEE/ACM Trans. Netw. 11(1), 17–32 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Andreas Koutsopoulos
    • 1
  • Christian Scheideler
    • 1
  • Thim Strothmann
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of PaderbornPaderbornGermany

Personalised recommendations