Liver Stem Cell Niche

  • Tohru ItohEmail author
Part of the Stem Cell Biology and Regenerative Medicine book series (STEMCELL)


The liver is renowned for its unique and strong regenerative capacities manifested in response to various types of injury. While mature hepatocytes, the parenchymal cells of the organ, possess a remarkable capacity to proliferate upon injury and can readily compensate the lost tissue, putative stem/progenitor-like cells are known to emerge in severely and/or chronically injured liver where the proliferative capacity of hepatocytes is compromised. These cells, referred to here as liver progenitor cells (LPCs), can be generally characterized by histopathological examinations of various liver diseases in both human patients and animal models as biliary epithelial cell marker-positive cells that emerge ectopically in the parenchymal region in the liver. LPCs play a substantial role in promoting liver regeneration, even though their contribution as the genuine stem cell population differentiating to hepatocytes still remains elusive. Recent evidence indicates that the emergence and expansion of LPCs actually reflects dynamic remodeling of the intrahepatic biliary system, thereby representing its extraordinary tissue plasticity. In accord with the notion that liver injury usually invokes inflammatory and fibrogenic responses, various types of immune cells and mesenchymal cells that are activated constitute the niche for LPCs and can influence their dynamics by providing signaling molecules and extracellular matrix components. Elucidating the cellular and molecular basis for the LPC induction and the biliary remodeling should pave the way for fully understanding the mechanisms of liver regeneration and hold promise for future development of therapeutic strategies for liver disease.


Liver Regeneration Liver progenitor cells Oval cells Ductular reaction 


  1. 1.
    Macdonald RA. “Lifespan” of liver cells. Autoradio-graphic study using tritiated thymidine in normal, cirrhotic, and partially hepatectomized rats. Arch Intern Med. 1961;107:335–43.CrossRefPubMedGoogle Scholar
  2. 2.
    Magami Y, Azuma T, Inokuchi H, Kokuno S, Moriyasu F, Kawai K, et al. Cell proliferation and renewal of normal hepatocytes and bile duct cells in adult mouse liver. Liver. 2002;22(5):419–25.CrossRefPubMedGoogle Scholar
  3. 3.
    Tanaka M, Itoh T, Tanimizu N, Miyajima A. Liver stem/progenitor cells: their characteristics and regulatory mechanisms. J Biochem. 2011;149(3):231–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Espanol-Suner R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143(6):1564–75.CrossRefPubMedGoogle Scholar
  6. 6.
    Malato Y, Naqvi S, Schurmann N, Ng R, Wang B, Zape J, et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J Clin Investig. 2011;121(12):4850–60.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rodrigo-Torres D, Affo S, Coll M, Morales-Ibanez O, Millan C, Blaya D, et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology (Baltimore, MD) 2014;60(4):1367–77.CrossRefGoogle Scholar
  8. 8.
    Tarlow BD, Finegold MJ, Grompe M. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology (Baltimore, MD). 2014;60(1):278–89.CrossRefGoogle Scholar
  9. 9.
    Yanger K, Knigin D, Zong Y, Maggs L, Gu G, Akiyama H, et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15(3):340–9.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Michalopoulos GK. Liver regeneration. J Cell Physiol. 2007;213(2):286–300.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Michalopoulos GK, DeFrances MC. Liver regeneration. Science. 1997;276(5309):60–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Itoh T, Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology (Baltimore, MD). 2014;59(4):1617–26.CrossRefGoogle Scholar
  13. 13.
    Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S, Miyajima A. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr Biol. 2012;22(13):1166–75.CrossRefPubMedGoogle Scholar
  14. 14.
    Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology (Baltimore, MD). 2004;39(6):1477–87.CrossRefGoogle Scholar
  15. 15.
    Roskams TA, Libbrecht L, Desmet VJ. Progenitor cells in diseased human liver. Semin Liver Dis. 2003;23(4):385–96.CrossRefPubMedGoogle Scholar
  16. 16.
    Jelnes P, Santoni-Rugiu E, Rasmussen M, Friis SL, Nielsen JH, Tygstrup N, et al. Remarkable heterogeneity displayed by oval cells in rat and mouse models of stem cell-mediated liver regeneration. Hepatology (Baltimore, MD). 2007;45(6):1462–70.CrossRefGoogle Scholar
  17. 17.
    Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3’-methyl-4-dimethylaminoazobenzene. Cancer Res. 1956;16(2):142–8.PubMedGoogle Scholar
  18. 18.
    Evarts RP, Hu Z, Omori N, Omori M, Marsden ER, Thorgeirsson SS. Precursor-product relationship between oval cells and hepatocytes: comparison between tritiated thymidine and bromodeoxyuridine as tracers. Carcinogenesis. 1996;17(10):2143–51.CrossRefPubMedGoogle Scholar
  19. 19.
    Evarts RP, Nagy P, Marsden E, Thorgeirsson SS. A precursor-product relationship exists between oval cells and hepatocytes in rat liver. Carcinogenesis. 1987;8(11):1737–40.CrossRefPubMedGoogle Scholar
  20. 20.
    Paku S, Schnur J, Nagy P, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver. Am J Pathol. 2001;158(4):1313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Michalopoulos GK. The liver is a peculiar organ when it comes to stem cells. Am J Pathol. 2014;184(5):1263–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Preisegger KH, Factor VM, Fuchsbichler A, Stumptner C, Denk H, Thorgeirsson SS. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Lab Invest. 1999;79(2):103–9.PubMedGoogle Scholar
  23. 23.
    Akhurst B, Croager EJ, Farley-Roche CA, Ong JK, Dumble ML, Knight B, et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology (Baltimore, MD). 2001;34(3):519–22.CrossRefGoogle Scholar
  24. 24.
    Fickert P, Stoger U, Fuchsbichler A, Moustafa T, Marschall HU, Weiglein AH, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol. 2007;171(2):525–36.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schaub JR, Malato Y, Gormond C, Willenbring H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 2014;8(4):933–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Choi TY, Ninov N, Stainier DY, Shin D. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology. 2014;146(3):776–88.CrossRefPubMedGoogle Scholar
  27. 27.
    He J, Lu H, Zou Q, Luo L. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology. 2014;146(3):789–800 e8.Google Scholar
  28. 28.
    Lowes KN, Brennan BA, Yeoh GC, Olynyk JK. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Am J Pathol. 1999;154(2):537–41.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ishikawa T, Factor VM, Marquardt JU, Raggi C, Seo D, Kitade M, et al. Hepatocyte growth factor/c-Met signaling is required for stem-cell-mediated liver regeneration in mice. Hepatology (Baltimore, MD). 2012;55(4):1215–26.CrossRefGoogle Scholar
  30. 30.
    Takase HM, Itoh T, Ino S, Wang T, Koji T, Akira S, et al. FGF7 is a functional niche signal required for stimulation of adult liver progenitor cells that support liver regeneration. Genes Dev. 2013;27(2):169–81.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Shin S, Upadhyay N, Greenbaum LE, Kaestner KH. Ablation of Foxl1-Cre-labeled hepatic progenitor cells and their descendants impairs recovery of mice from liver injury. Gastroenterology. 2015;148(1):192-202 e3.Google Scholar
  32. 32.
    Paku S, Nagy P, Kopper L, Thorgeirsson SS. 2-acetylaminofluorene dose-dependent differentiation of rat oval cells into hepatocytes: confocal and electron microscopic studies. Hepatology (Baltimore, MD). 2004;39(5):1353–61.CrossRefGoogle Scholar
  33. 33.
    Kaneko K, Kamimoto K, Miyajima A, Itoh T. Adaptive remodeling of the biliary architecture underlies liver homeostasis. Hepatology (Baltimore, MD). 2015;61(6):2056–66.Google Scholar
  34. 34.
    Nagahama Y, Sone M, Chen X, Okada Y, Yamamoto M, Xin B, et al. Contributions of hepatocytes and bile ductular cells in ductular reactions and remodeling of the biliary system after chronic liver injury. Am J Pathol. 2014;184(11):3001–12.CrossRefPubMedGoogle Scholar
  35. 35.
    Sekiya S, Suzuki A. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am J Pathol. 2014;184(5):1468–78.CrossRefPubMedGoogle Scholar
  36. 36.
    Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM, Finegold MJ, et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15(5):605–18.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R, Aiello NM, et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013;27(7):719–24.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Knight B, Akhurst B, Matthews VB, Ruddell RG, Ramm GA, Abraham LJ, et al. Attenuated liver progenitor (oval) cell and fibrogenic responses to the choline deficient, ethionine supplemented diet in the BALB/c inbred strain of mice. J Hepatol. 2007;46(1):134–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Strick-Marchand H, Masse GX, Weiss MC, Di Santo JP. Lymphocytes support oval cell-dependent liver regeneration. J Immunol. 2008;181(4):2764–71.CrossRefPubMedGoogle Scholar
  40. 40.
    Van Hul N, Lanthier N. Espanol Suner R, Abarca Quinones J, van Rooijen N, Leclercq I. Kupffer cells influence parenchymal invasion and phenotypic orientation, but not the proliferation, of liver progenitor cells in a murine model of liver injury. Am J Pathol. 2011;179(4):1839–50.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Viebahn CS, Benseler V, Holz LE, Elsegood CL, Vo M, Bertolino P, et al. Invading macrophages play a major role in the liver progenitor cell response to chronic liver injury. J Hepatol. 2010;53(3):500–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Akhurst B, Matthews V, Husk K, Smyth MJ, Abraham LJ, Yeoh GC. Differential lymphotoxin-beta and interferon gamma signaling during mouse liver regeneration induced by chronic and acute injury. Hepatology (Baltimore, MD). 2005;41(2):327–35.CrossRefGoogle Scholar
  43. 43.
    Knight B, Yeoh GC, Husk KL, Ly T, Abraham LJ, Yu C, et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. J Exp Med. 2000;192(12):1809–18.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yeoh GC, Ernst M, Rose-John S, Akhurst B, Payne C, Long S, et al. Opposing roles of gp130-mediated STAT-3 and ERK-1/ 2 signaling in liver progenitor cell migration and proliferation. Hepatology (Baltimore, MD). 2007;45(2):486–94.CrossRefGoogle Scholar
  45. 45.
    Jakubowski A, Ambrose C, Parr M, Lincecum JM, Wang MZ, Zheng TS, et al. TWEAK induces liver progenitor cell proliferation. J Clin Investig. 2005;115(9):2330–40.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tirnitz-Parker JE, Viebahn CS, Jakubowski A, Klopcic BR, Olynyk JK, Yeoh GC, et al. Tumor necrosis factor-like weak inducer of apoptosis is a mitogen for liver progenitor cells. Hepatology (Baltimore, MD). 2010;52(1):291–302.CrossRefGoogle Scholar
  47. 47.
    Houlihan DD, Newsome PN. Critical review of clinical trials of bone marrow stem cells in liver disease. Gastroenterology. 2008;135(2):438–50.CrossRefPubMedGoogle Scholar
  48. 48.
    Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, et al. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology (Baltimore, MD). 2011;53(6):2003–15.CrossRefGoogle Scholar
  49. 49.
    Bird TG, Lu WY, Boulter L, Gordon-Keylock S, Ridgway RA, Williams MJ, et al. Bone marrow injection stimulates hepatic ductular reactions in the absence of injury via macrophage-mediated TWEAK signaling. Proc Natl Acad Sci USA. 2013;110(16):6542–7.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Radaeva S, Sun R, Pan HN, Hong F, Gao B. Interleukin 22 (IL-22) plays a protective role in T cell-mediated murine hepatitis: IL-22 is a survival factor for hepatocytes via STAT3 activation. Hepatology (Baltimore, MD). 2004;39(5):1332–42.CrossRefGoogle Scholar
  51. 51.
    Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Karow M, Flavell RA. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity. 2007;27(4):647–59.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Zhang Y, Cobleigh MA, Lian JQ, Huang CX, Booth CJ, Bai XF, et al. A proinflammatory role for interleukin-22 in the immune response to hepatitis B virus. Gastroenterology. 2011;141(5):1897–906.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Feng D, Kong X, Weng H, Park O, Wang H, Dooley S, et al. Interleukin-22 promotes proliferation of liver stem/progenitor cells in mice and patients with chronic hepatitis B virus infection. Gastroenterology. 2012;143(1):188–98 e7.Google Scholar
  54. 54.
    Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun. 2013;4:2823.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Iwaisako K, Jiang C, Zhang M, Cong M, Moore-Morris TJ, Park TJ, et al. Origin of myofibroblasts in the fibrotic liver in mice. Proc Natl Acad Sci USA. 2014;111(32):E3297–305.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology (Baltimore, MD). 2004;40(5):1151–9.CrossRefGoogle Scholar
  57. 57.
    Van Hul NK, Abarca-Quinones J, Sempoux C, Horsmans Y, Leclercq IA. Relation between liver progenitor cell expansion and extracellular matrix deposition in a CDE-induced murine model of chronic liver injury. Hepatology (Baltimore, MD). 2009;49(5):1625–35.CrossRefGoogle Scholar
  58. 58.
    Vestentoft PS, Jelnes P, Andersen JB, Tran TA, Jorgensen T, Rasmussen M, et al. Molecular constituents of the extracellular matrix in rat liver mounting a hepatic progenitor cell response for tissue repair. Fibrogenesis Tissue Repair. 2013;6(1):21.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lorenzini S, Bird TG, Boulter L, Bellamy C, Samuel K, Aucott R, et al. Characterisation of a stereotypical cellular and extracellular adult liver progenitor cell niche in rodents and diseased human liver. Gut. 2010;59(5):645–54.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kallis YN, Robson AJ, Fallowfield JA, Thomas HC, Alison MR, Wright NA, et al. Remodelling of extracellular matrix is a requirement for the hepatic progenitor cell response. Gut. 2011;60(4):525–33.CrossRefPubMedGoogle Scholar
  61. 61.
    Yovchev MI, Zhang J, Neufeld DS, Grozdanov PN, Dabeva MD. Thymus cell antigen-1-expressing cells in the oval cell compartment. Hepatology (Baltimore, MD). 2009;50(2):601–11.CrossRefGoogle Scholar
  62. 62.
    Steiling H, Werner S. Fibroblast growth factors: key players in epithelial morphogenesis, repair and cytoprotection. Curr Opin Biotechnol. 2003;14(5):533–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Kitade M, Factor VM, Andersen JB, Tomokuni A, Kaji K, Akita H, et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev. 2013;27(15):1706–17.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Apte U, Thompson MD, Cui S, Liu B, Cieply B, Monga SP. Wnt/beta-catenin signaling mediates oval cell response in rodents. Hepatology (Baltimore, MD). 2008;47(1):288–95.CrossRefGoogle Scholar
  65. 65.
    Hu M, Kurobe M, Jeong YJ, Fuerer C, Ghole S, Nusse R, et al. Wnt/beta-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133(5):1579–91.CrossRefPubMedGoogle Scholar
  66. 66.
    Itoh T, Kamiya Y, Okabe M, Tanaka M, Miyajima A. Inducible expression of Wnt genes during adult hepatic stem/progenitor cell response. FEBS Lett. 2009;583(4):777–81.CrossRefPubMedGoogle Scholar
  67. 67.
    Yang W, Yan HX, Chen L, Liu Q, He YQ, Yu LX, et al. Wnt/beta-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Res. 2008;68(11):4287–95.CrossRefPubMedGoogle Scholar
  68. 68.
    Spee B, Carpino G, Schotanus BA, Katoonizadeh A, Vander Borght S, Gaudio E, et al. Characterisation of the liver progenitor cell niche in liver diseases: potential involvement of Wnt and Notch signalling. Gut. 2010;59(2):247–57.CrossRefPubMedGoogle Scholar
  69. 69.
    Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med. 2012;18(4):572–9.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular BiosciencesThe University of TokyoBunkyo-ku, TokyoJapan

Personalised recommendations