Model Checking Parameterized Asynchronous Shared-Memory Systems

  • Antoine Durand-Gasselin
  • Javier Esparza
  • Pierre Ganty
  • Rupak Majumdar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9206)


We characterize the complexity of liveness verification for parameterized systems consisting of a leader process and arbitrarily many anonymous and identical contributor processes. Processes communicate through a shared, bounded-value register. While each operation on the register is atomic, there is no synchronization primitive to execute a sequence of operations atomically.

We analyze the case in which processes are modeled by finite-state machines or pushdown machines and the property is given by a Büchi automaton over the alphabet of read and write actions of the leader. We show that the problem is decidable, and has a surprisingly low complexity: it is NP-complete when all processes are finite-state machines, and is PSPACE-hard and in NEXPTIME when they are pushdown machines. This complexity is lower than for the non-parameterized case: liveness verification of finitely many finite-state machines is PSPACE-complete, and undecidable for two pushdown machines.

For finite-state machines, our proofs characterize infinite behaviors using existential abstraction and semilinear constraints. For pushdown machines, we show how contributor computations of high stack height can be simulated by computations of many contributors, each with low stack height. Together, our results characterize the complexity of verification for parameterized systems under the assumptions of anonymity and asynchrony.


  1. 1.
    Abdulla, P.A., Bertrand, N., Rabinovich, A., Schnoebelen, P.: Verification of probabilistic systems with faulty communication. Inf. Comput. 202(2), 105–228 (2005)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-state systems. In: LICS’1996. pp. 313–321. IEEE Computer Society (1996)Google Scholar
  3. 3.
    Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inf. Comput. 127(2), 91–101 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distrib. Comput. 20(4), 279–304 (2007)CrossRefMATHGoogle Scholar
  6. 6.
    Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22(6), 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: application to model-checking. In: CONCUR’1997: Proceedings of 8th International Conference on Concurrency Theory. LNCS, vol. 1243, pp. 135–150. Springer (1997)Google Scholar
  8. 8.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS’1999. pp. 352–359. IEEE Computer Society (1999)Google Scholar
  9. 9.
    Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous shared-memory systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 124–140. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3), 675–735 (1992)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Grädel, E.: Subclasses of presburger arithmetic and the polynomial-time hierarchy. Theor. Comput. Sci. 56, 289–301 (1988)CrossRefMATHGoogle Scholar
  12. 12.
    Hague, M.: Parameterised pushdown systems with non-atomic writes. In: Proceedings of FSTTCS’2011. LIPIcs, vol. 13, pp. 457–468. Schloss Dagstuhl (2011)Google Scholar
  13. 13.
    Meyer, R.: On boundedness in depth in the pi-calculus. In: Procedings of IFIP TCS 2008. IFIP, vol. 273, pp. 477–489. Springer (2008)Google Scholar
  14. 14.
    Pnueli, A., Xu, J., Zuck, L.D.: Liveness with \({(0,1,\infty )}\)-counter abstraction. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  15. 15.
    Verma, K.N., Seidl, H., Schwentick, T.: On the complexity of equational horn clauses. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 337–352. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Antoine Durand-Gasselin
    • 1
  • Javier Esparza
    • 1
  • Pierre Ganty
    • 2
  • Rupak Majumdar
    • 3
  1. 1.TU MunichMunichGermany
  2. 2.IMDEA Software InstituteMadridSpain
  3. 3.MPI-SWSKaiserslauternGermany

Personalised recommendations