The Hanoi Omega-Automata Format

  • Tomáš Babiak
  • František Blahoudek
  • Alexandre Duret-Lutz
  • Joachim Klein
  • Jan Křetínský
  • David Müller
  • David Parker
  • Jan Strejček
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9206)

Abstract

We propose a flexible exchange format for \(\omega \)-automata, as typically used in formal verification, and implement support for it in a range of established tools. Our aim is to simplify the interaction of tools, helping the research community to build upon other people’s work. A key feature of the format is the use of very generic acceptance conditions, specified by Boolean combinations of acceptance primitives, rather than being limited to common cases such as Büchi, Streett, or Rabin. Such flexibility in the choice of acceptance conditions can be exploited in applications, for example in probabilistic model checking, and furthermore encourages the development of acceptance-agnostic tools for automata manipulations. The format allows acceptance conditions that are either state-based or transition-based, and also supports alternating automata.

References

  1. 1.
    Babiak, T., Křetínský, M., Řehák, V., Strejček, J.: LTL to Büchi automata translation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Babiak, T., Blahoudek, F., Křetínský, M., Strejček, J.: Effective translation of LTL to deterministic Rabin automata: beyond the (F,G)-fragment. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Chatterjee, K., Gaiser, A., Křetínský, J.: Automata with generalized Rabin pairs for probabilistic model checking and LTL synthesis. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 559–575. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  4. 4.
    Duret-Lutz, A.: Manipulating LTL formulas using Spot 1.0. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 442–445. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  5. 5.
    Duret-Lutz, A.: LTL translation improvements in Spot 1.0. Int. J. Crit. Comput. Based Syst. 5(1/2), 31–54 (2014)CrossRefGoogle Scholar
  6. 6.
    Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model checking library using transition-based generalized Büchi automata. In: MASCOTS 2004, pp. 76–83. IEEE Computer Society Press (2004)Google Scholar
  7. 7.
    Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal logic. In: PSTV 1995, pp. 3–18. Chapman and Hall (1996)Google Scholar
  8. 8.
    Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2003) MATHGoogle Scholar
  9. 9.
    Klein, J., Baier, C.: Experiments with deterministic \(\omega \)-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic \(\omega \)-automata. In: Holub, J., Ždárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  11. 11.
    Klein, J., Müller, D.: The jhoafparser library (2015). http://automata.tools/hoa/jhoafparser/
  12. 12.
    Komárková, Z., Křetínský, J.: Rabinizer 3: Safraless translation of LTL to small deterministic automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 235–241. Springer, Heidelberg (2014) Google Scholar
  13. 13.
    Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic \(\omega \)-automata vis-a-vis deterministic Büchi automata. In: Du, D.-Z., Zhang, X.-S. (eds.) ISAAC 1994. LNCS, vol. 834, pp. 378–386. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  16. 16.
    Löding, C.: Optimal bounds for transformations of \(\omega \)-automata. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 97–109. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  17. 17.
    Rönkkö, M.: LBT: LTL to Büchi conversion. http://www.tcs.hut.fi/Software/maria/tools/lbt/ (1999). Implements [7]
  18. 18.
    Tauriainen, H.: Automata and linear temporal logic: translation with transition-based acceptance. Ph.D thesis, Helsinki University of Technology, Espoo, Finland, Sept 2006Google Scholar
  19. 19.
    Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. Int. J. Softw. Tools Technol. Transf. 4(1), 57–70 (2002)CrossRefGoogle Scholar
  20. 20.
    Tsai, M.-H., Tsay, Y.-K., Hwang, Y.-S.: GOAL for games, omega-automata, and logics. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 883–889. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Vardi, M.Y.: Automata-theoretic model checking revisited. In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 137–150. Springer, Heidelberg (2007) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tomáš Babiak
    • 1
  • František Blahoudek
    • 1
  • Alexandre Duret-Lutz
    • 2
  • Joachim Klein
    • 3
  • Jan Křetínský
    • 5
  • David Müller
    • 3
  • David Parker
    • 4
  • Jan Strejček
    • 1
  1. 1.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic
  2. 2.LRDEEPITALe Kremlin-BicêtreFrance
  3. 3.Technische Universität DresdenDresdenGermany
  4. 4.University of BirminghamBirminghamUK
  5. 5.IST AustriaKlosterneuburgAustria

Personalised recommendations