Advertisement

Angelic Verification: Precise Verification Modulo Unknowns

  • Ankush Das
  • Shuvendu K. Lahiri
  • Akash Lal
  • Yi Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9206)

Abstract

Verification of open programs can be challenging in the presence of an unconstrained environment. Verifying properties that depend on the environment yields a large class of uninteresting false alarms. Using a verifier on a program thus requires extensive initial investment in modeling the environment of the program. We propose a technique called angelic verification for verification of open programs, where we constrain a verifier to report warnings only when no acceptable environment specification exists to prove the assertion. Our framework is parametric in a vocabulary and a set of angelic assertions that allows a user to configure the tool. We describe a few instantiations of the framework and an evaluation on a set of real-world benchmarks to show that our technique is competitive with industrial-strength tools even without models of the environment.

Keywords

Conjunctive Normal Form Satisfiability Modulo Theory Quantifier Elimination Program Verifier Abductive Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Arlt, S., Schäf, M.: Joogie: infeasible code detection for java. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 767–773. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  2. 2.
    Lahiri, S.K., Vaswani, K., Hoare, C.A.R.: Differential static analysis: opportunities, applications, and challenges. In: Proceedings of the Workshop on Future of Software Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT, International Symposium on Foundations of Software Engineering, November 7-11, 2010, pp. 201–2014, Santa Fe, NM, USA (2010)Google Scholar
  3. 3.
    Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with SLAM. Commun. ACM 54(7), 68–76 (2011)CrossRefGoogle Scholar
  4. 4.
    Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In: Program Analysis For Software Tools and Engineering (PASTE 2005), pp. 82–87 (2005)Google Scholar
  5. 5.
    Barnett, M., Qadeer, S.: BCT: a translator from MSIL to Boogie. In: Seventh Workshop on Bytecode Semantics, Verification, Analysis and Transformation (2012)Google Scholar
  6. 6.
    Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S., Engler, D.: A few billion lines of code later: using static analysis to find bugs in the real world. Commun. ACM 53(2), 66–75 (2010)CrossRefGoogle Scholar
  7. 7.
    Blackshear, S., Lahiri, S.K.: Almost-correct specifications: a modular semantic framework for assigning confidence to warnings. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2013, pp. 209–218, Seattle, WA, USA, 16–19 Jun 2013Google Scholar
  8. 8.
    Bodík, R., Chandra, S., Galenson, J., Kimelman, D., Tung, N., Barman, S., Rodarmor, C.: Programming with angelic nondeterminism. In: Principles of Programming Languages (POPL 2010), pp. 339–352 (2010)Google Scholar
  9. 9.
    Bush, W.R., Pincus, J.D., Sielaff, D.J.: A static analyzer for finding dynamic programming errors. Softw. Pract. Exper. 30(7), 775–802 (2000)CrossRefMATHGoogle Scholar
  10. 10.
    Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analysis by means of bi-abduction. In: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 289–300, Savannah, GA, USA, 21–23 Jan 2009Google Scholar
  11. 11.
    Chandra, S., Fink, S.J., Sridharan, M.: Snugglebug: a powerful approach to weakest preconditions. In: Programming Language Design and Implementation (PLDI 2009), pp. 363–374 (2009)Google Scholar
  12. 12.
    Chandra, S., Torlak, E., Barman, S., Bodik, R.: Angelic debugging. In: Proceedings of the 33rd International Conference on Software Engineering, ICSE 2011, pp. 121–130. ACM, New York, NY, USA (2011)Google Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  14. 14.
    Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog programs using bounded model checking. In: Proceedings of the 40th Design Automation Conference, DAC 2003, pp. 368–371, Anaheim, CA, USA, 2–6 Jun 2003Google Scholar
  15. 15.
    Condit, J., Hackett, B., Lahiri, S.K., Qadeer, S.: Unifying type checking and property checking for low-level code. In: Principles of Programming Languages (POPL 2009), pp. 302–314 (2009)Google Scholar
  16. 16.
    Cousot, P., Cousot, R.: Abstract interpretation : a unified lattice model for the static analysis of programs by construction or approximation of fixpoints. In: Symposium on Principles of Programming Languages (POPL 1977), ACM Press (1977)Google Scholar
  17. 17.
    Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program checking. J. ACM 52(3), 365–473 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dillig, I., Dillig, T., Aiken, A.: Static error detection using semantic inconsistency inference. In: Programming Language Design and Implementation (PLDI 2007), pp. 435–445 (2007)Google Scholar
  20. 20.
    Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive inference. In: Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2012, pp. 181–192. ACM, New York, NY, USA, (2012)Google Scholar
  21. 21.
    Engler, D.R., Chen, D.Y., Chou, A.: Bugs as inconsistent behavior: a general approach to inferring errors in systems code. In: Symposium on Operating Systems Principles (SOSP 2001), pp. 57–72 (2001)Google Scholar
  22. 22.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Hoenicke, J., Leino, K.R.M., Podelski, A., Schäf, M., Wies, T.: Doomed program points. Form. Meth. Syst. Des. 37(2–3), 171–199 (2010)CrossRefMATHGoogle Scholar
  24. 24.
    Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Shlyakhter, I., Ashar, P.: F-Soft: software verification platform. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 301–306. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  25. 25.
    Jhala, R., Majumdar, R.: Path slicing. In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation, pp. 38–47, Chicago, IL, USA, 12–15 Jun 2005Google Scholar
  26. 26.
    Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum satisfiability. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, pp. 437–446, San Jose, CA, USA, 4–8 Jun 2011Google Scholar
  27. 27.
    Joshi, S., Lahiri, S.K., Lal, A.: Underspecified harnesses and interleaved bugs. In: Principles of Programming Languages (POPL 2012), pp. 19–30, ACM (2012)Google Scholar
  28. 28.
    Kremenek, T., Engler, D.R.: Z-ranking: using statistical analysis to counter the impact of static analysis approximations. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 295–315. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  29. 29.
    Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion checking. In: Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE 2013, pp. 345–355, Saint Petersburg, Russian Federation, 18–26 Aug 2013Google Scholar
  30. 30.
    Lahiri, S.K., Qadeer, S., Galeotti, J.P., Voung, J.W., Wies, T.: Intra-module inference. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 493–508. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  31. 31.
    Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 427–443. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  32. 32.
    Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification modulo versions: towards usable verification. In: ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2014, p. 32, Edinburgh, United Kingdom, 09–11 Jun 2014Google Scholar
  33. 33.
    McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  34. 34.
    Satisfiability modulo theories library (SMT-LIB). http://goedel.cs.uiowa.edu/smtlib/
  35. 35.
    Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A decision procedure for an extensional theory of arrays. In: IEEE Symposium of Logic in Computer Science (LICS 2001) (2001)Google Scholar
  36. 36.
    Tomb, A., Flanagan, C.: Detecting inconsistencies via universal reachability analysis. In: International Symposium on Software Testing and Analysis (ISSTA 2012) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ankush Das
    • 1
  • Shuvendu K. Lahiri
    • 1
  • Akash Lal
    • 1
  • Yi Li
    • 2
  1. 1.Microsoft ResearchBangaloreIndia
  2. 2.University of TorontoTorontoCanada

Personalised recommendations