The Monsoons and Climate Change

  • Leila Maria Véspoli de Carvalho
Part of the Springer Climate book series (SPCL)


Monsoon systems are unique features of the climate of the Earth and the reality of global warming has important implications for the environment and human society. This chapter provides a brief overview of this important topic.


Monsoons Climate change Population IPCC CMIP5 



Leila Maria Véspoli de Carvalho acknowledges the support of the Climate and Large-scale Dynamics Program of the National Science Foundation (AGS-1053294 and AGS 1116105), the NOAA Climate Program Office (NA10OAR4310170), the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), and the International Potato Center in Lima, Peru (SB120184). The author is grateful to Forest Cannon and Yingjie Hu for producing Figs. 1.1 and 1.2 in this chapter.


  1. Andreae MO et al (1988) Biomass-burning emissions and associated haze layers over Amazonia. J Geophys Res Atmos 93:1509–1527CrossRefGoogle Scholar
  2. Andreae MO et al (2001) Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophys Res Lett 28:951–954CrossRefGoogle Scholar
  3. Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309CrossRefGoogle Scholar
  4. Bird BW, Abbott MB, Vuille M, Rodbell DT, Stansell ND, Rosenmeier MF (2011) A 2300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc Natl Acad Sci 108:8583–8588CrossRefGoogle Scholar
  5. Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophy Res Earth Surf 115:F03019CrossRefGoogle Scholar
  6. Bookhagen B, Strecker MR (2012) Spatiotemporal trends in erosion rates across a pronounced rainfall gradient: Examples from the southern Central Andes. Earth Planet Sci Lett 327–328:97–110CrossRefGoogle Scholar
  7. Carvalho JLN, Cerri CEP, Feigl BJ, Píccolo MC, Godinho VP, Cerri CC (2009) Carbon sequestration in agricultural soils in the Cerrado region of the Brazilian Amazon. Soil and Tillage Res 103:342–349CrossRefGoogle Scholar
  8. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678CrossRefGoogle Scholar
  9. Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. part i: mean monsoon and daily precipitation. J Clim 14:2381–2403CrossRefGoogle Scholar
  10. Eltahir EAB (1998) A soil moisture-rainfall feedback mechanism: theory and observations. Water Resour Res 34:765–776CrossRefGoogle Scholar
  11. Fearnside P (2000) Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Clim Change 46:115–158CrossRefGoogle Scholar
  12. Freitas S et al (2005) Monitoring the transport of biomass burning emissions in South America. Environ Fluid Mech 5:135–167CrossRefGoogle Scholar
  13. Hao WM, Liu M-H (1994) Spatial and temporal distribution of tropical biomass burning. Glob Biogeochem Cycles 8:495–503CrossRefGoogle Scholar
  14. Haywood JM et al (2008) Overview of the dust and biomass-burning experiment and african monsoon multidisciplinary analysis special observing period-0. J Geophys Res: Atmos 113:D00C17CrossRefGoogle Scholar
  15. Hobbs PV, Reid JS, Kotchenruther RA, Ferek RJ, Weiss R (1997) Direct radiative forcing by smoke from biomass burning. Science 275:1777–1778CrossRefGoogle Scholar
  16. IPCC (2013) The physical sience basis. Contributions of working group i to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds). Cambridge University Press, Cambridge, UK and New York, USA, pp 1535Google Scholar
  17. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993CrossRefGoogle Scholar
  18. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723CrossRefGoogle Scholar
  19. Lestari RK, Watanabe M, Imada Y, Shiogama H, Field RD, Takemura T, Kimoto M (2014) Increasing potential of biomass burning over Sumatra, Indonesia induced by anthropogenic tropical warming. Environ Res Lett 9:104010CrossRefGoogle Scholar
  20. Luo Y (2007) Terrestrial carbon-cycle feedback to climate warming. Annu Rev Ecol Evol Syst 38:683–712CrossRefGoogle Scholar
  21. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317CrossRefGoogle Scholar
  22. Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620CrossRefGoogle Scholar
  23. Seck P, Diagne A, Mohanty S, Wopereis MS (2012) Crops that feed the world 7: rice. Food Sec 4:7–24CrossRefGoogle Scholar
  24. Small EE (2001) The influence of soil moisture anomalies on variability of the North American monsoon system. Geophys Res Lett 28:139–142CrossRefGoogle Scholar
  25. Trenberth KE (2011) Attribution of climate variations and trends to human influences and natural variability. Wiley Interdisc Rev Clim Change 2:925–930CrossRefGoogle Scholar
  26. Tripati S, Raut LN (2006) Monsoon wind and maritime trade: a case study of historical evidence from Orissa, India. Curr Sci 90:864–871Google Scholar
  27. United Nations, D. o. E. a. S. A., Population Division (2013) World population prospects: The 2012 revision, vol II, Demographic profiles (ST/ESA/SER.A/345), IGoogle Scholar
  28. Vera C et al (2006) Toward a unified view of the American monsoon systems. J Clim 19:4977–5000CrossRefGoogle Scholar
  29. Webster PJ, Magaña VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: Processes, predictability, and the prospects for prediction. J Geophys Res Oceans 103:14451–14510CrossRefGoogle Scholar
  30. White MA, Running SW, Thornton PE (1999) The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int J Biometeorol 42:139–145CrossRefGoogle Scholar
  31. Zhou JY, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11:1020–1040CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Earth Research InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations