Advertisement

Proton Transfer in Aqueous Solution: Exploring the Boundaries of Adaptive QM/MM

  • T. Jiang
  • J. M. Boereboom
  • C. Michel
  • P. Fleurat-Lessard
  • R. E. Bulo
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 21)

Abstract

In this chapter, we review the current state-of-the-art in quantum mechanical/molecular mechanical (QM/MM) simulations of reactions in aqueous solutions, and we discuss how proton transfer poses new challenges for its successful application. In the QM/MM description of an aqueous reaction, solvent molecules in the QM region are diffusive and need to be either constrained within the region, or their description (QM versus MM) needs to be updated as they diffuse away. The latter approach is known as adaptive QM/MM. We review several constrained and adaptive QM/MM methods, and classify them in a consistent manner. Most of the adaptive methods employ a transition region, where every solvent molecule can continuously change character (from QM to MM, and vice versa), temporarily becoming partially QM and partially MM. Where a conventional QM/MM scheme partitions a system into a set of QM and a set of MM atoms, an adaptive method employs multiple QM/MM partitions, to describe the fractional QM character. We distinguish two classes of adaptive methods: Discontinuous and continuous. The former methods use at most two QM/MM partitions, and cannot completely avoid discontinuities in the energy and the forces. The more recent continuous adaptive methods employ a larger number of QM/MM partitions for a given configuration. Comparing the performance of the methods for the description of solution chemistry, we find that in certain cases the low-cost constrained methods are sufficiently accurate. For more demanding purposes, the continuous adaptive schemes provide a good balance between dynamical and structural accuracy. Finally, we challenge the adaptive approach by applying it to the difficult topic of proton transfer and diffusion. We present new results, using a well-behaved continuous adaptive method (DAS) to describe an alkaline aqueous solution of methanol. Comparison with fully QM and fully MM simulations shows that the main discrepancies are rooted in the presence of a QM/MM boundary, and not in the adaptive scheme. An anomalous confinement of the hydroxide ion to the QM part of the system stems from the mismatch between QM and MM potentials, which affects the free diffusion of the ion. We also observe an increased water density inside the QM region, which originates from the different chemical potentials of the QM and MM water molecules. The high density results in locally enhanced proton transfer rates.

Keywords

Active Region Quantum Mechanical Transition Region Proton Transfer Solvent Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Shelton DP (2000) Chem Phys Lett 325:513. doi: 10.1016/S0009-2614(00)00734-X CrossRefGoogle Scholar
  2. 2.
    Marcus Y (2009) Chem Rev 109(3):1346. doi: 10.1021/cr8003828 CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Tielrooij KJ, Timmer RLA, Bakker HJ, Bonn M (2009) Phys Rev Lett 102:198303. doi: 10.1103/PhysRevLett.102.198303 CrossRefGoogle Scholar
  5. 5.
    Hassanali A, Giberti F, Cuny J, Kühne TD, Parrinello M (2013) PNAS 110(34):13723. doi: 10.1073/pnas.1306642110 CrossRefGoogle Scholar
  6. 6.
    Roberts ST, Mandal A, Tokmakoff A (2014) J Phys Chem B 118(28):8062. doi: 10.1021/jp501145p CrossRefGoogle Scholar
  7. 7.
    Giberti F, Hassanali AA, Ceriotti M, Parrinello M (2014) J Phys Chem B 118(46):13226. doi: 10.1021/jp507752e CrossRefGoogle Scholar
  8. 8.
    Tuckerman ME, Marx D, Parrinello M (2002) Nature 417(6892):925. doi: 10.1038/nature00797 CrossRefGoogle Scholar
  9. 9.
    Warshel A, Levitt M (1976) J Mol Biol 103(2):227. doi: 10.1016/0022-2836(76)90311-9 CrossRefGoogle Scholar
  10. 10.
    Thole BT, van Duijnen PT (1980) Theor Chim Acta 55(4):307. doi: 10.1007/BF00549429 CrossRefGoogle Scholar
  11. 11.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11(6):700. doi: 10.1002/jcc.540110605 CrossRefGoogle Scholar
  12. 12.
    Gao J (1995) Reviews in computational chemistry. In: Lipkowitz K, Boyd DB (eds) Wiley, pp 119–185. doi: 10.1002/9780470125847.ch3
  13. 13.
    Sherwood P (2000) Modern methods and algorithms of quantum chemistry: proceedings. In: Grotendorst J (ed) NIC series, vol 3, 2nd edn. NIC-Directors, Jülich, pp 257–277Google Scholar
  14. 14.
    Carloni P, Rothlisberger U, Parrinello M (2002) Acc Chem Res 35(6):455. doi: 10.1021/ar010018u CrossRefGoogle Scholar
  15. 15.
    Magistrato A, DeGrado WF, Laio A, Rothlisberger U, VandeVondele J, Klein ML (2003) J Phys Chem B 107(17):4182. doi: 10.1021/jp027032o CrossRefGoogle Scholar
  16. 16.
    Kerdcharoen T, Liedl KR, Rode BM (1996) Chem Phys 211(1–3):313. doi: 10.1016/0301-0104(96)00152-8 CrossRefGoogle Scholar
  17. 17.
    Bulo RE, Michel C, Fleurat-Lessard P, Sautet P (2013) J Chem Theory Comput 9(12):5567. doi: 10.1021/ct4005596 CrossRefGoogle Scholar
  18. 18.
    Pezeshki S, Lin H (2015) Mol Simul 41(1–3):168. doi: 10.1080/08927022.2014.911870 CrossRefGoogle Scholar
  19. 19.
    Park K, Gotz AW, Walker RC, Paesani F (2012) J Chem Theory Comput 8:2868. doi: 10.1021/ct300331f CrossRefGoogle Scholar
  20. 20.
    Mones L, Jones A, Goetz AW, Laino T, Walker RC, Leimkuhler B, Cányi G, Bernstein N (2015) J Comput Chem 36: 633. doi: 10.1002/jcc.23839
  21. 21.
    Pezeshki S, Davis C, Heyden A, Lin H (2014) J Chem Theory Comput 10:4765. doi: 10.1021/ct500553x CrossRefGoogle Scholar
  22. 22.
    Tunon I, Martins-Costa MTC, Millot C, Ruiz-Lopez MF (1997) J Chem Phys 106(9):3633. doi: 10.1063/1.473457 CrossRefGoogle Scholar
  23. 23.
    Várnai C, Bernstein N, Mones L, Csányi G (2013) J Phys Chem B 117(40):12202. doi: 10.1021/jp405974b CrossRefGoogle Scholar
  24. 24.
    Nielsen SO, Bulo RE, Moore PB, Ensing B (2010) Phys Chem Chem Phys 12:12401. doi: 10.1039/c004111d CrossRefGoogle Scholar
  25. 25.
    Potestio R, Fritsch S, Espanol P, Delgado-Buscalioni R, Kremer K, Everaers R, Donadio D (2013) Phys Rev Lett 110:108301/1. doi: 10.1103/PhysRevLett.110.108301
  26. 26.
    Praprotnik M, Delle Site L (2013) Methods Mol Biol (NY, U.S.) 924:567. doi: 10.1007/978-1-62703-017-5_21
  27. 27.
    Salazar MR (2005) J Phys Chem A 109(50):11515. doi: 10.1021/jp053551q CrossRefGoogle Scholar
  28. 28.
    Guthrie MG, Daigle AD, Salazar MR (2010) J Chem Theory Comput 6:18. doi: 10.1021/ct900449q CrossRefGoogle Scholar
  29. 29.
    Pezeshki S, Lin H (2011) J Chem Theory Comput 7:3625. doi: 10.1021/ct2005209 CrossRefGoogle Scholar
  30. 30.
    Kerdcharoen T, Morokuma K (2002) Chem Phys Lett 355(3–4):257. doi: 10.1016/S0009-2614(02)00210-5 CrossRefGoogle Scholar
  31. 31.
    Csányi G, Albaret T, Payne MC, De Vita A (2004) Phys Rev Lett 93:175503. doi: 10.1103/PhysRevLett.93.175503 CrossRefGoogle Scholar
  32. 32.
    Bernstein N, Várnai C, Solt I, Winfield SA, Payne MC, Simon I, Fuxreiter M, Csányi G (2012) Phys Chem Chem Phys 14:646. doi: 10.1039/c1cp22600b CrossRefGoogle Scholar
  33. 33.
    Heyden A, Lin H, Truhlar DG (2007) J Phys Chem B 111(9):2231. doi: 10.1021/jp0673617 CrossRefGoogle Scholar
  34. 34.
    Bulo RE, Ensing B, Sikkema J, Visscher L (2009) J Chem Theory Comput 5(9):2212. doi: 10.1021/ct900148e CrossRefGoogle Scholar
  35. 35.
    Watanabe HC, Kubar T, Elstner M (2014) J Chem Theory Comput. doi: 10.1021/ct5005593 Google Scholar
  36. 36.
    Bakowies D, Thiel W (1996) J Phys Chem 100(25):10580. doi: 10.1021/jp9536514 CrossRefGoogle Scholar
  37. 37.
    Senn H, Thiel W (2007) Atomistic approaches in modern biology. In: Reiher M (ed) Topics in current chemistry, vol 268. Springer, Berlin, pp 173–290. doi: 10.1007/128_2006_084
  38. 38.
    Senn HM, Thiel W (2009) Angew Chem Int Ed 48(7):1198. doi: 10.1002/anie.200802019 CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Lin H (2008) J Chem Theory Comput 4(3):414. doi: 10.1021/ct700296x CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Lin H (2010) Theor Chem Acc 126(5–6):315. doi: 10.1007/s00214-009-0704-z CrossRefGoogle Scholar
  41. 41.
    Rowley CN, Roux B (2012) J Chem Theory Comput 8(10):3526. doi: 10.1021/ct300091w CrossRefGoogle Scholar
  42. 42.
    Shiga M, Masia M (2013) J Chem Phys 139(4):044120. doi: 10.1063/1.4816629 CrossRefGoogle Scholar
  43. 43.
    Hofer TS, Pribil AB, Randolf BR, Rode BM (2005) J Am Chem Soc 127(41):14231. doi: 10.1021/ja052700f CrossRefGoogle Scholar
  44. 44.
    Fleurat-Lessard P, Michel C, Bulo RE (2012) J Chem Phys 137:074111/1. doi: 10.1063/1.4739743
  45. 45.
    Pezeshki S, Davis C, Heyden A, Lin H (2014) J Chem Theory Comput 10:4765. doi: 10.1021/ct500553x CrossRefGoogle Scholar
  46. 46.
    Takenaka N, Kitamura Y, Koyano Y, Nagaoka M (2012) Chem Phys Lett 524:56. doi: 10.1016/j.cplett.2011.12.053 CrossRefGoogle Scholar
  47. 47.
    Takenaka N, Kitamura Y, Koyano Y, Nagaoka M (2012) J Chem Phys 137:024501/1. doi: 10.1063/1.4732307
  48. 48.
    Waller MP, Kumbhar S, Yang J (2014) ChemPhysChem 15:3218. doi: 10.1002/cphc.201402105 CrossRefGoogle Scholar
  49. 49.
    Velde G, Bickelhaupt F, Baerends E, Fonseca-Guerra C, Van Gisbergen S, Snijders J, Ziegler T (2001) J Comput Chem 22:931. doi: 10.1002/jcc.1056 CrossRefGoogle Scholar
  50. 50.
    Rode BM, Schwenk CF, Tongraar A (2004) J Mol Liq 110:105. doi: 10.1016/j.molliq.2003.09.016 CrossRefGoogle Scholar
  51. 51.
    Hofer TS, Tran HT, Schwenk CF, Rode BM (2004) J Comput Chem 25(2):211. doi: 10.1002/jcc.10374 CrossRefGoogle Scholar
  52. 52.
    Agmon N (1995) Chem Phys Lett 244:456. doi: 10.1016/0009-2614(95)00905-J CrossRefGoogle Scholar
  53. 53.
    Komatsuzaki T, Ohmine I (1994) Chem Phys 180(23):239. doi: 10.1016/0301-0104(93)E0424-T CrossRefGoogle Scholar
  54. 54.
    Newton MD, Ehrenson S (1971) J Am Chem Soc 93(20):4971. doi: 10.1021/ja00749a001 CrossRefGoogle Scholar
  55. 55.
    Markovitch O, Chen H, Izvekov S, Paesani F, Voth GA, Agmon N (2008) J Phys Chem B 112(31):9456. doi: 10.1021/jp804018y CrossRefGoogle Scholar
  56. 56.
    Marx D, Chandra A, Tuckerman ME (2010) Chem Rev 110(4):2174. doi: 10.1021/cr900233f CrossRefGoogle Scholar
  57. 57.
    Botti A, Bruni F, Imberti S, Ricci M, Soper A (2005) J Mol Liq 117(1–3):81. doi: 10.1016/j.molliq.2004.08.013 CrossRefGoogle Scholar
  58. 58.
    Rahaman O, van Duin ACT, Goddard WA, Doren DJ (2011) J Phys Chem B 115(2):249. doi: 10.1021/jp108642r CrossRefGoogle Scholar
  59. 59.
    Stewart J (2007) J Mol Model 13(12):1173. doi: 10.1007/s00894-007-0233-4 CrossRefGoogle Scholar
  60. 60.
    Korth M (2010) J Chem Theory Comput 6(12):3808. doi: 10.1021/ct100408b CrossRefGoogle Scholar
  61. 61.
    Stewart JJP (2012) Mopac2012. Stewart computational chemistry, Version 7.263 W. http://OpenMOPAC.net
  62. 62.
    Marion A, Monard G, Ruiz-Lopez MF, Ingrosso F (2014) J Chem Phys 141(3):034106. doi: 10.1063/1.4886655 CrossRefGoogle Scholar
  63. 63.
    Bernal-Uruchurtu MI, Ruiz-López MF (2000) Chem Phys Lett 330(1–2):118. doi: 10.1016/S0009-2614(00)01062-9 CrossRefGoogle Scholar
  64. 64.
    Monard G, Bernal-Uruchurtu MI, van der Vaart A, Merz KM, Ruiz-López MF (2005) J Phys Chem A 109(15):3425. doi: 10.1021/jp0459099 CrossRefGoogle Scholar
  65. 65.
    Wu X, Thiel W, Pezeshki S, Lin H (2013) J Chem Theory Comput 9(6):2672. doi: 10.1021/ct400224n CrossRefGoogle Scholar
  66. 66.
    Rappe AK, Goddard WA (1991) J Phys Chem 95(8):3358. doi: 10.1021/j100161a070 CrossRefGoogle Scholar
  67. 67.
    Fritsch S, Poblete S, Junghans C, Ciccotti G, Delle Site L, Kremer K (2012) Phys Rev Lett 108:170602/1. doi: 10.1103/PhysRevLett.108.170602

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • T. Jiang
    • 1
  • J. M. Boereboom
    • 1
  • C. Michel
    • 2
  • P. Fleurat-Lessard
    • 2
    • 3
  • R. E. Bulo
    • 1
  1. 1.Inorganic Chemistry and Catalysis GroupDebye Institute for Nanomaterials Science, Utrecht UniversityUtrechtThe Netherlands
  2. 2.Laboratoire de Chimie de L’ENS de LyonUniversité de LyonLyon Cedex 7France
  3. 3.Université de BourgogneInstitut de Chimie Moléculaire de L’Université de Bourgogne (ICMUB)DijonFrance

Personalised recommendations