Multiscale Modelling of In Situ Oil Sands Upgrading with Molybdenum Carbide Nanoparticles

  • Xingchen Liu
  • Baojing Zhou
  • Farouq Ahmed
  • Alexander Tkalych
  • Akira Miyamoto
  • Dennis R. Salahub
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 21)


This chapter presents multi-scale models of the reactions that occur in the in situ oil sands upgrading process. Its focus is on the various modelling tools and their applications to the benzene hydrogenation reactions catalyzed by molybdenum carbide nanoparticles. As the reaction mechanism of benzene hydrogenation on molybdenum carbide is not clear, we start with density functional theory (DFT) studies to elucidate the reaction mechanism, using both periodic and cluster models. Benzene hydrogenation on molybdenum carbide follows the Langmuir-Hinshelwood mechanism, with the six-member ring tilting up gradually. A tight-binding quantum chemical molecular dynamics (TB-QCMD) method is used to track the physical motion of the atoms in the reaction processes of C6H6 on a Mo-terminated α-Mo2C (0001) surface. The approximate DFT method, density functional tight-binding (DFTB), was parameterized to allow the quantum mechanical treatment of nanoscale systems. With the nudged elastic band method, the potential energy profiles of benzene hydrogenation on molybdenum carbide nanoparticles have been obtained. Finally a force field was brought in to describe the solvent environment in the system, leading to a multiscale quantum mechanical/molecular mechanical (QM/MM) model. This study suggests that entropy and the environment play important roles in heterogeneous reactions catalyzed by molybdenum carbide nanoparticles.


Density Functional TheoryDensity Functional Theory Potential Energy Function Benzene Molecule Molybdenum Carbide Benzene Hydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Acronyms (alphabetical order)


Auxiliary density functional theory


Density functional theory


Density functional tight-binding






High-resolution transmission electron microscopy






Linear combination of Gaussian type orbitals


Molybdenum carbide nanoparticles


Molecular dynamics


Minimum energy path


Polyaromatic hydrocarbons


Projector augmented wave


Potential of mean force


Quantum mechanics/molecular mechanics


Steam-assisted gravity drainage






Tight-binding quantum chemistry


Tight-binding quantum chemical molecular dynamics


Temperature-programmed reaction-mass spectrometry


Transition state




Weighted-histogram analysis method


  1. 1.
    Alboudwarej H, Felix J, Taylor S, Badry R, Bremner C, Brough B, Skeates C, Baker A, Palmer D, Pattison K, Beshry M, Krawchuk P, Brown G, Calvo R, Triana JAC, Hathcock R, Koerner K, Hughes T, Kundu D, Cardenas JL, West C (2006) Highlighting heavy oil. Oilfield Rev. Schlumberger.
  2. 2.
    Sanati M, Harrysson B, Faghihi M, Gevert B, Jaras S (2002) Catalytic hydrodearomatization. In: Spivey JJ (ed) Catalysis: Volume 16, vol 16. The Royal Society of Chemistry, pp 1–42. doi: 10.1039/9781847553287-00001
  3. 3.
    Glassman D, Wucker M, Isaacman T, Champilou C (2011) The water-energy nexus, adding water to the energy sagenda.
  4. 4.
    Pereira-Almao P (2012) In-situ upgrading of bitumen and heavy oils via nanocatalysis. Can J Chem Eng 90(2):320–329. doi: 10.1002/cjce.21646 CrossRefGoogle Scholar
  5. 5.
    Frauwallner ML, Lopez-Linares F, Lara-Romero J, Scott CE, Ali V, Hernandez E, Pereira-Almao P (2011) Toluene hydrogenation at low temperature using a molybdenum carbide catalyst. Appl Catal A-Gen 394(1–2):62–70. doi: 10.1016/j.apcata.2010.12.024 CrossRefGoogle Scholar
  6. 6.
    Survery USG (2012) U.S. Mineral commodity summaries 2012.107
  7. 7.
    Scott C (2013) In-situ oil sand upgrading with nanocatalysts. Pers CommunGoogle Scholar
  8. 8.
    Stanislaus A, Cooper BH (1994) Aromatic hydrogenation catalysis: a review. Catal Rev 36(1):75–123. doi: 10.1080/01614949408013921 CrossRefGoogle Scholar
  9. 9.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136 (3B):B864–B871. doi:
  10. 10.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138. doi: 10.1103/PhysRev.140.A1133 CrossRefGoogle Scholar
  11. 11.
    Köster AM, Geudtner G, Calaminici P, Casida ME, Dominguez VD, Flores-Moreno R, Goursot A, Heine T, Ipatov A, Janetzko F, Del Campo JM, Revelevs JU, Vela A, Zuniga B, Salahub DR (2011) deMon2 k. The deMon developers, CINVESTAV, Mexico.
  12. 12.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953 CrossRefGoogle Scholar
  13. 13.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186. doi: 10.1103/PhysRevB.54.11169 CrossRefGoogle Scholar
  14. 14.
    Calaminici P, Domínguez-Soria V-D, Flores-Moreno R, Gamboa-Martínez G, Geudtner G, Goursot A, Salahub D, Köster A (2012) Auxiliary density functional theory: from molecules to nanostructures. In: Leszczynski J (ed) Handbook of computational chemistry. Springer Netherlands, pp 573–610. doi: 10.1007/978-94-007-0711-5_16
  15. 15.
    Dunlap BI, Connolly JWD, Sabin JR (1979) On first-row diatomic molecules and local density models. J Chem Phys 71(12):4993–4999. doi: 10.1063/1.438313 CrossRefGoogle Scholar
  16. 16.
    Köster AM, Reveles JU, del Campo JM (2004) Calculation of exchange-correlation potentials with auxiliary function densities. J Chem Phys 121(8):3417–3424. doi: 10.1063/1.1771638 CrossRefGoogle Scholar
  17. 17.
    Köster AM (2003) Hermite Gaussian auxiliary functions for the variational fitting of the Coulomb potential in density functional methods. J Chem Phys 118(22):9943–9951. doi: 10.1063/1.1571519 CrossRefGoogle Scholar
  18. 18.
    Köster AM, del Campo JM, Janetzko F, Zuniga-Gutierrez B (2009) A MinMax self-consistent-field approach for auxiliary density functional theory. J Chem Phys 130(11):114106. doi: 10.1063/1.3080618 CrossRefGoogle Scholar
  19. 19.
    Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys Rev B 51(19):12947–12957. doi: 10.1103/PhysRevB.51.12947 CrossRefGoogle Scholar
  20. 20.
    Oliveira AF, Seifert G, Heine T, Duarte HA (2009) Density-functional based tight-binding: an approximate DFT method. J Braz Chem Soc 20:1193–1205. doi: 10.1590/S0103-50532009000700002 CrossRefGoogle Scholar
  21. 21.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58(11):7260–7268. doi: 10.1103/PhysRevB.58.7260 CrossRefGoogle Scholar
  22. 22.
    Zhechkov L, Heine T, Patchkovskii S, Seifert G, Duarte HA (2005) An efficient a posteriori treatment for dispersion interaction in density-functional-based tight binding. J Chem Theory Comput 1(5):841–847. doi: 10.1021/ct050065y CrossRefGoogle Scholar
  23. 23.
    Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2000) A QM/MM implementation of the self-consistent charge density functional tight binding (SCC-DFTB) method. J Phys Chem B 105(2):569–585. doi: 10.1021/jp0029109 CrossRefGoogle Scholar
  24. 24.
    Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249. doi: 10.1016/0022-2836(76)90311-9 CrossRefGoogle Scholar
  25. 25.
    Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. doi: 10.1002/jcc.21367 Google Scholar
  26. 26.
    Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28(4):578–581. doi: 10.1016/0009-2614(74)80109-0 CrossRefGoogle Scholar
  27. 27.
    Kästner J (2011) Umbrella sampling. Wiley Interdiscip Rev: Comput Mol Sci 1(6):932–942. doi: 10.1002/wcms.66 Google Scholar
  28. 28.
    Roux B (1995) The calculation of the potential of mean force using computer simulations. Comput Phys Commun 91(1–3):275–282. doi: 10.1016/0010-4655(95)00053-I CrossRefGoogle Scholar
  29. 29.
    Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1992) The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem 13(8):1011–1021. doi: 10.1002/jcc.540130812 CrossRefGoogle Scholar
  30. 30.
    Selvam P, Tsuboi H, Koyama M, Kubo M, Miyamoto A (2005) Tight-binding quantum chemical molecular dynamics method: a novel approach to the understanding and design of new materials and catalysts. Catal Today 100(1–2):11–25. doi: 10.1016/j.cattod.2004.12.020 CrossRefGoogle Scholar
  31. 31.
    St. Clair TP, Oyama ST, Cox DF (2002) Adsorption and reaction of thiophene on α-Mo2C(0001). Surf Sci 511(1–3):294–302. doi: 10.1016/s0039-6028(02)01505-4 CrossRefGoogle Scholar
  32. 32.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. doi: 10.1002/jcc.20495 CrossRefGoogle Scholar
  33. 33.
    Rocha AS, Rocha AB, da Silva VT (2010) Benzene adsorption on Mo2C: a theoretical and experimental study. Appl Catal A-Gen 379(1–2):54–60. doi: 10.1016/j.apcata.2010.02.032 CrossRefGoogle Scholar
  34. 34.
    Rocha ÂS, Silva VLTd, Leitão AA, Herbst MH, Faro-Jr AC (2004) Low temperature low pressure benzene hydrogenation on Y zeolite-supported carbided molybdenum. Catal Today 98(1–2):281–288. doi: 10.1016/j.cattod.2004.07.041 CrossRefGoogle Scholar
  35. 35.
    Lee JS, Yeom MH, Park KY, Nam I-S, Chung JS, Kim YG, Moon SH (1991) Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. J Catal 128(1):126–136. doi: 10.1016/0021-9517(91)90072-c CrossRefGoogle Scholar
  36. 36.
    Frauwallner ML (2009) Catalyst development for hydrogenation at low temperature, pressure, and hydrocarbon space velocity. M.Sc. thesis, University of Calgary, CalgaryGoogle Scholar
  37. 37.
    Guzmán HJ, Xu W, Stacchiola D, Vitale G, Scott CE, Rodríguez JA, Pereira-Almao P (2013) In situ time-resolved X-ray diffraction study of the synthesis of Mo2C with different carburization agents. Can J Chem 91(7):573–582. doi: 10.1139/cjc-2012-0516 CrossRefGoogle Scholar
  38. 38.
    Ardakani SJ, Liu XB, Smith KJ (2007) Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts. Appl Catal A-Gen 324:9–19. doi: 10.1016/j.apcata.2007.02.048 CrossRefGoogle Scholar
  39. 39.
    Pang M, Liu CY, Xia W, Muhler M, Liang CH (2012) Activated carbon supported molybdenum carbides as cheap and highly efficient catalyst in the selective hydrogenation of naphthalene to tetralin. Green Chem 14(5):1272–1276. doi: 10.1039/c2gc35177c CrossRefGoogle Scholar
  40. 40.
    Oliveira RR Jr, Rocha AS, Teixeira da Silva V, Rocha AB (2014) Investigation of hydrogen occlusion by molybdenum carbide. Appl Catal A 469:139–145. doi: 10.1016/j.apcata.2013.09.031 CrossRefGoogle Scholar
  41. 41.
    Liu X, Tkalych A, Zhou B, Köster AM, Salahub DR (2013) Adsorption of Hexacyclic C6H6, C6H8, C6H10, and C6H12 on a Mo-Terminated α-Mo2C (0001) surface. J Phys Chem C117(14):7069–7080. doi: 10.1021/jp312204u Google Scholar
  42. 42.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  43. 43.
    Calaminici P, Janetzko F, Koster AM, Mejia-Olvera R, Zuniga-Gutierrez B (2007) Density functional theory optimized basis sets for gradient corrected functionals: 3d transition metal systems. J Chem Phys 126 (4). doi: 10.1063/1.2431643
  44. 44.
    Eng J, Bent BE, Frühberger B, Chen JG (1998) Modifying surface reactivities by a carbide overlayer: a vibrational study of the reaction mechanisms of cyclohexene and 1,3-Cyclohexadiene on Mo(110) and (4 × 4)-C/Mo(110) Surfaces. Langmuir 14(6):1301–1311. doi: 10.1021/la970709s CrossRefGoogle Scholar
  45. 45.
    MarquezAlvarez C, Claridge JB, York APE, Sloan J, Green MLH (1997) Benzene hydrogenation over transition metal carbides, in Studies in surface science and catalysis, vol 106. Hydrotreatment and hydrocracking of oil fractionsGoogle Scholar
  46. 46.
    Choi J-S, Krafft J-M, Krzton A, Djéga-Mariadassou G (2002) Study of residual oxygen species over molybdenum carbide prepared during in situ DRIFTS experiments. Catal Lett 81(3):175–180. doi: 10.1023/a:1016568804706 CrossRefGoogle Scholar
  47. 47.
    Zhang J, Wu WC (2008) Hydrogenation of benzene over Mo2C/Al2O3 catalyst. China Petrol Process Petrochem Technol 4:41–43Google Scholar
  48. 48.
    Ahmed F, Liu X, Miyamoto A, Salahub DR (2015) Adsorption and hydrogenation of C6H6 on α-Mo2C (0001): a quantum chemical molecular dynamics study. unpublishedGoogle Scholar
  49. 49.
    Hyeon TH, Fang MM, Suslick KS (1996) Nanostructured molybdenum carbide: Sonochemical synthesis and catalytic properties. J Am Chem Soc 118(23):5492–5493. doi: 10.1021/ja9538187 CrossRefGoogle Scholar
  50. 50.
    Saeys M, Reyniers MF, Neurock M, Marin GB (2005) Ab initio reaction path analysis of benzene hydrogenation to cyclohexane on Pt(111). J Phys Chem B 109(6):2064–2073. doi: 10.1021/jp049421j CrossRefGoogle Scholar
  51. 51.
    Fan C, Zhu Y-A, Zhou X-G, Liu Z-P (2011) Catalytic hydrogenation of benzene to cyclohexene on Ru(0001) from density functional theory investigations. Catal Today 160(1):234–241. doi: 10.1016/j.cattod.2010.03.075 CrossRefGoogle Scholar
  52. 52.
    Liu X (2015) In-situ heavy oil upgrading with molybdenum carbide nanoparticles: a multiscale modeling approach. Ph.D. thesis, University of Calgary, CalgaryGoogle Scholar
  53. 53.
    Liu X, Salahub DR (2015) Molybdenum carbide nanocatalysts at work in the in-situ environment: a DFTB and QM(DFTB)/MM Study. J Am Chem Soc 137(12):4249–4259. doi:  10.1021/jacs.5b01494
  54. 54.
    Zhou B, Liu X, Cuervo J, Salahub DR (2012) Density functional study of benzene adsorption on the α-Mo2C(0001) surface. Struct Chem 23(5):1459–1466. doi: 10.1007/s11224-012-0064-5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xingchen Liu
    • 1
  • Baojing Zhou
    • 2
  • Farouq Ahmed
    • 3
  • Alexander Tkalych
    • 4
  • Akira Miyamoto
    • 5
  • Dennis R. Salahub
    • 1
  1. 1.Department of Chemistry, Institute for Quantum Science and Technology, and Centre for Molecular SimulationUniversity of CalgaryCalgaryCanada
  2. 2.Department of Chemistry, School of Chemical EngineeringNanjing University of Science and TechnologyNanjingChina
  3. 3.Chemical and Petroleum Engineering Department, Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  4. 4.Department of ChemistryPrinceton UniversityPrincetonUSA
  5. 5.New Industry Creation Hatchery CenterTohoku UniversityAobaJapan

Personalised recommendations