From Dark Matter to Brittle Fracture

  • P. C. F. Di Stefano
  • C. Bouard
  • S. Ciliberto
  • S. Deschanel
  • O. Ramos
  • S. Santucci
  • A. Tantot
  • L. Vanel
  • N. Zaïm
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Prompted by the intriguing results obtained by some of the rare-event searches looking for the dark matter that may make up the bulk of the matter in the Universe, we have studied brittle fracture as a background in scintillation detectors. Under conditions of ambient temperature and pressure, we have demonstrated a correlation between fracture, acoustic emission, and emission of light in several common scintillators. We present early results from an improved setup. When commissioned, it will provide additional channels to study these phenomena, in controllable atmospheres.

Keywords

Dark matter Mechanoluminescence Scintillator Brittle Fracture 

References

  1. 1.
    Zwicky, F.: Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 6, 110 (1933)Google Scholar
  2. 2.
    Schnee, R.W.: Physics of the Large and Small. In Csaki, C., Dodelson, S. (eds.) Proceedings of the 2009 Theoretical Advanced Study Institute in Elementary Particle Physics, p. 629. World Scientific, Singapore (2010)Google Scholar
  3. 3.
    Smith, N.J.T.: The SNOLAB deep underground facility. Eur. Phys. J. Plus 127, 108 (2012)CrossRefGoogle Scholar
  4. 4.
    Angloher, G., et al.: Limits on WIMP dark matter using sapphire cryogenic detectors. Astropart. Phys. 18, 43–55 (2002)CrossRefGoogle Scholar
  5. 5.
    Åström, J., et al.: Fracture processes observed with a cryogenic detector. Phys. Lett. A 356, 262–266 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Agnese, R., et al.: Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013). CDMS CollaborationCrossRefGoogle Scholar
  7. 7.
    Aalseth, C.E., et al.: CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Physical Review D 88, 012002 (2013). CoGeNT CollaborationCrossRefGoogle Scholar
  8. 8.
    Angloher, G., et al.: Results from 730 kg days of the CRESST-II dark matter search. Eur. Phys. J. C 22, 1971 (2012). CRESST-II CollaborationCrossRefGoogle Scholar
  9. 9.
    Bernabei, R., et al.: First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008)CrossRefGoogle Scholar
  10. 10.
    Aprile, A., et al.: Dark matter results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012)CrossRefGoogle Scholar
  11. 11.
    Ahmed, Z., et al.: Dark matter search results from the CDMS II experiment. Science 327, 1619–1621 (2010). CDMS II CollaborationCrossRefGoogle Scholar
  12. 12.
    Agnese, R., et al.: Search for low-mass weakly interacting massive particles with SuperCDMS. Phys. Rev. Lett. 112, 241302 (2014). SuperCDMS CollaborationCrossRefGoogle Scholar
  13. 13.
    Agnese, R., et al.: Search for low-mass weakly interacting massive particles using voltage-assisted calorimetric ionization detection in the SuperCDMS experiment. Phys. Rev. Lett. 112, 041302 (2014). SuperCDMS CollaborationCrossRefGoogle Scholar
  14. 14.
    Armengaud, E., et al.: Search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors. Phys. Rev. D. 86, 051701(R) (2012). EDELWEISS CollaborationCrossRefGoogle Scholar
  15. 15.
    Akerib, D.S., et al.: First results from the LUX dark matter experiment at the sanford underground research facility. Phys. Rev. Lett. 112, 091303 (2014). LUX CollaborationCrossRefGoogle Scholar
  16. 16.
    Archambault, S., et al.: Constraints on low-mass WIMP interactions on 19F from PICASSO. Phys. Lett. B 711, 153–161 (2012). PICASSO CollaborationCrossRefGoogle Scholar
  17. 17.
    Knoll, G.F.: Radiation detection and measurement, 3rd edn. Wiley, New York (2000)Google Scholar
  18. 18.
    Tantot, A., et al.: Sound and light from fractures in scintillators. Phys. Rev. Lett. 111, 154301 (2013)CrossRefGoogle Scholar
  19. 19.
    Langford, S.C., et al.: Simultaneous measurements of the electron and photon emission accompanying fracture of single-crystal MgO. J. App. Phys. 62, 1437 (1987)CrossRefGoogle Scholar
  20. 20.
    Tantot, A.: in preparationGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • P. C. F. Di Stefano
    • 1
  • C. Bouard
    • 1
  • S. Ciliberto
    • 3
  • S. Deschanel
    • 1
    • 4
  • O. Ramos
    • 2
  • S. Santucci
    • 3
  • A. Tantot
    • 1
  • L. Vanel
    • 1
  • N. Zaïm
    • 1
  1. 1.Department of PhysicsQueen’s UniversityKingstonCanada
  2. 2.Institut Lumière MatièreUMR5306 Université Lyon 1-CNRS, Université de LyonVilleurbanne CedexFrance
  3. 3.Laboratoire de PhysiqueUniversité de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR 5672Lyon Cedex 07France
  4. 4.MATEIS, UMR 5510 CNRS and INSA-LyonUniversité de LyonVilleurbanneFrance

Personalised recommendations