Advertisement

Distribution and Uncertainty in Complex Event Recognition

  • Alexander Artikis
  • Matthias WeidlichEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9202)

Abstract

Complex event recognition proved to be a valuable tool for a wide range of applications, reaching from logistics over finance to healthcare. In this paper, we reflect on some of these application areas to outline open research problems in event recognition. In particular, we focus on the questions of (1) how to distribute event recognition and (2) how to deal with the inherent uncertainty observed in many event recognition scenarios. For both questions, we provide a brief overview of the state-of-the-art and point out research gaps.

Keywords

Composite Event Event Recognition Event Stream Complex Event Processing Markov Logic Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the borealis stream processing engine. In: CIDR, pp. 277–289 (2005). http://www.cidrdb.org/cidr2005/papers/P23.pdf
  2. 2.
    Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  3. 3.
    Artikis, A., Baber, C., Bizarro, P., de Wit, C.C., Etzion, O., Fournier, F., Goulart, P., Howes, A., Lygeros, J., Paliouras, G., Schuster, A., Sharfman, I.: Scalable proactive event-driven decision-making. IEEE Technology and Society Magazine 33(3), 35–41 (2014)CrossRefGoogle Scholar
  4. 4.
    Artikis, A., Weidlich, M., Schnitzler, F., Boutsis, I., Liebig, T., Piatkowski, N., Bockermann, C., Morik, K., Kalogeraki, V., Marecek, J., Gal, A., Mannor, S., Gunopulos, D., Kinane, D.: Heterogeneous stream processing and crowdsourcing for urban traffic management. In: International Conference on Extending Database Technology (EDBT), pp. 712–723 (2014)Google Scholar
  5. 5.
    Artikis, A., Gal, A., Kalogeraki, V., Weidlich, M.: Event recognition challenges and techniques: Guest editors’ introduction. ACM Trans. Internet Techn. 14(1), 1 (2014). http://doi.acm.org/10.1145/2632220 CrossRefGoogle Scholar
  6. 6.
    Balkesen, C., Dindar, N., Wetter, M., Tatbul, N.: Rip: run-based intra-query parallelism for scalable complex event processing. In: DEBS, pp. 3–14 (2013)Google Scholar
  7. 7.
    Brenna, L., Demers, A.J., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M., Thatte, M., White, W.M.: Cayuga: a high-performance event processing engine. In: SIGMOD Conference, pp. 1100–1102 (2007)Google Scholar
  8. 8.
    Brenna, L., Gehrke, J., Hong, M., Johansen, D.: Distributed event stream processing with non-deterministic finite automata. In: DEBS (2009)Google Scholar
  9. 9.
    Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event processing. ACM Computing Surveys 44(3), 15 (2012)CrossRefGoogle Scholar
  10. 10.
    Ding, L., Works, K., Rundensteiner, E.A.: Semantic stream query optimization exploiting dynamic metadata. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K. (eds.) Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April 11–16, 2011, Hannover, Germany, pp. 111–122. IEEE Computer Society (2011). http://dx.doi.org/10.1109/ICDE.2011.5767840
  11. 11.
    Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelligence. Morgan & Claypool Publishers (2009)Google Scholar
  12. 12.
    Giatrakos, N., Deligiannakis, A., Garofalakis, M., Sharfman, I., Schuster, A.: Distributed geometric query monitoring using prediction models. ACM TODS (2014)Google Scholar
  13. 13.
    Hirzel, M.: Partition and compose: parallel complex event processing. In: DEBS, pp. 191–200 (2012)Google Scholar
  14. 14.
    Kanaujia, A., Choe, T.E., Deng, H.: Complex events recognition under uncertainty in a sensor network. arXiv:1411.0085 [cs] (Nov 2014), arXiv:1411.0085
  15. 15.
    Keren, D., Sagy, G., Abboud, A., Ben-David, D., Schuster, A., Sharfman, I., Deligiannakis, A.: Geometric monitoring of heterogeneous streams. IEEE TKDE (2014)Google Scholar
  16. 16.
    Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory and Practice of Logic Programming 11, 235–262 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4(1), 67–96 (1986)CrossRefGoogle Scholar
  18. 18.
    Lakshmanan, G.T., Rabinovich, Y.G., Etzion, O.: A stratified approach for supporting high throughput event processing applications. In: Gokhale, A.S., Schmidt, D.C. (eds.) DEBS. ACM (2009)Google Scholar
  19. 19.
    Li, G., Jacobsen, H.-A.: Composite subscriptions in content-based publish/subscribe systems. In: Alonso, G. (ed.) Middleware 2005. LNCS, vol. 3790, pp. 249–269. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  20. 20.
    Lijffijt, J., Papapetrou, P., Puolamäki, K.: Size matters: finding the most informative set of window lengths. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 451–466. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  21. 21.
    Luckham, D.: The Power of Events: An Introduction to Complex EventProcessing in Distributed Enterprise Systems. Addison-Wesley (2002)Google Scholar
  22. 22.
    Maier, D., Grossniklaus, M., Moorthy, S., Tufte, K.: Capturing episodes: may the frame be with you. In: DEBS, pp. 1–11 (2012)Google Scholar
  23. 23.
    Morariu, V.I., Davis, L.S.: Multi-agent event recognition in structured scenarios. In: CVPR, pp. 3289–3296 (2011)Google Scholar
  24. 24.
    Papapetrou, O., Garofalakis, M.N., Deligiannakis, A.: Sketch-based querying of distributed sliding-window data streams. PVLDB 5(10), 992–1003 (2012)Google Scholar
  25. 25.
    Patroumpas, K.: Multi-scale window specification over streaming trajectories. J. Spatial Information Science 7(1), 45–75 (2013)Google Scholar
  26. 26.
    Patroumpas, K., Artikis, A., Katzouris, N., Vodas, M., Theodoridis, Y., Pelekis, N.: Event recognition for maritime surveillance. In: Alonso, G., Geerts, F., Popa, L., Barceló, P., Teubner, J., Ugarte, M., den Bussche, J.V., Paredaens, J. (eds.) Proceedings of the 18th International Conference on Extending Database Technology, EDBT 2015, Brussels, Belgium, March 23–27, 2015, pp. 629–640. OpenProceedings.org (2015). http://dx.doi.org/10.5441/002/edbt.2015.63
  27. 27.
    Pietzuch, P.R., Bacon, J.: Peer-to-peer overlay broker networks in an event-based middleware. In: Jacobsen, H. (ed.) Proceedings of the 2nd International Workshop on Distributed Event-Based Systems, DEBS 2003, Sunday, June 8th, 2003, San Diego, California, USA (in conjunction with SIGMOD/PODS). ACM (2003). http://doi.acm.org/10.1145/966618.966628
  28. 28.
    Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated probabilistic streams. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 715–728. SIGMOD 2008, ACM, New York (2008). http://doi.acm.org/10.1145/1376616.1376688
  29. 29.
    Sadilek, A., Kautz, H.A.: Location-based reasoning about complex multi-agent behavior. J. Artif. Intell. Res. (JAIR) 43, 87–133 (2012)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Schultz-Møller, N.P., Migliavacca, M., Pietzuch, P.R.: Distributed complex event processing with query rewriting. In: DEBS (2009)Google Scholar
  31. 31.
    Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring threshold functions over distributed data streams. In: SIGMOD Conference, pp. 301–312 (2006)Google Scholar
  32. 32.
    Shen, Z., Kawashima, H., Kitagawa, H.: Probabilistic event stream processing with lineage. In: Proc. of Data Engineering Workshop (2008)Google Scholar
  33. 33.
    Skarlatidis, A., Artikis, A., Filippou, J., Paliouras, G.: A probabilistic logic programming event calculus. Theory and Practice of Logic Programming 15(2), 213–245 (2015)CrossRefGoogle Scholar
  34. 34.
    Skarlatidis, A., Paliouras, G., Artikis, A., Vouros, G.: Probabilistic event calculus for event recognition. ACM Transactions on Computational Logic 16(2), 11:1–11:37 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Toshniwal, A., Taneja, S., Shukla, A., Ramasamy, K., Patel, J.M., Kulkarni, S., Jackson, J., Gade, K., Fu, M., Donham, J., Bhagat, N., Mittal, S., Ryaboy, D.V.: Storm@twitter. In: Dyreson, C.E., Li, F., Özsu, M.T. (eds.) International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22–27, 2014, pp. 147–156. ACM (2014). http://doi.acm.org/10.1145/2588555.2595641
  36. 36.
    Tran, S.D., Davis, L.S.: Event modeling and recognition using markov logic networks. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 610–623. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  37. 37.
    Vespier, U., Nijssen, S., Knobbe, A.J.: Mining characteristic multi-scale motifs in sensor-based time series. In: He, Q., Iyengar, A., Nejdl, W., Pei, J., Rastogi, R. (eds.) 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013, San Francisco, CA, USA, October 27 - November 1, 2013, pp. 2393–2398. ACM (2013). http://doi.acm.org/10.1145/2505515.2505620
  38. 38.
    Vesset, D., Flemming, M., Shirer, M.: Worldwide decision management software 2010–2014 forecast: A fast-growing opportunity to drive the intelligent economy. IDC report 226244 (2011)Google Scholar
  39. 39.
    Wang, J., Domingos, P.: Hybrid markov logic networks. In: AAAI, pp. 1106–1111 (2008)Google Scholar
  40. 40.
    Weidlich, M., Ziekow, H., Gal, A., Mendling, J., Weske, M.: Optimizing event pattern matching using business process models. IEEE Trans. Knowl. Data Eng. 26(11), 2759–2773 (2014). http://doi.ieeecomputersociety.org/10.1109/TKDE.2014.2302306 CrossRefGoogle Scholar
  41. 41.
    Wu, K., Yu, P.S., Gedik, B., Hildrum, K., Aggarwal, C.C., Bouillet, E., Fan, W., George, D., Gu, X., Luo, G., Wang, H.: Challenges and experience in prototyping a multi-modal stream analytic and monitoring application on system S. In: Koch, C., Gehrke, J., Garofalakis, M.N., Srivastava, D., Aberer, K., Deshpande, A., Florescu, D., Chan, C.Y., Ganti, V., Kanne, C., Klas, W., Neuhold, E.J. (eds.) Proceedings of the 33rd International Conference on Very Large Data Bases, University of Vienna, Austria, September 23–27, 2007, pp. 1185–1196. ACM (2007). http://www.vldb.org/conf/2007/papers/industrial/p1185-wu.pdf
  42. 42.
    Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., Stoica, I.: Discretized streams: fault-tolerant streaming computation at scale. In: Kaminsky, M., Dahlin, M. (eds.) ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP 2013, Farmington, PA, USA, November 3–6, 2013, pp. 423–438. ACM (2013). http://doi.acm.org/10.1145/2517349.2522737

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Maritime StudiesUniversity of PiraeusPiraeusGreece
  2. 2.Institute of Informatics and TelecommunicationsNCSR “Demokritos”AthensGreece
  3. 3.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations