Consistency Checking of Re-engineered UML Class Diagrams via Datalog+/-

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9202)


UML class diagrams (UCDs) are a widely adopted formalism for modeling the intensional structure of a software system. Although UCDs are typically guiding the implementation of a system, it is common in practice that developers need to recover the class diagram from an implemented system. This process is known as reverse engineering. A fundamental property of reverse engineered (or simply re-engineered) UCDs is consistency, showing that the system is realizable in practice. In this work, we investigate the consistency of re-engineered UCDs, and we show is pspace-complete. The upper bound is obtained by exploiting algorithmic techniques developed for conjunctive query answering under guarded Datalog+/-, that is, a key member of the Datalog+/- family of KR languages, while the lower bound is obtained by simulating the behavior of a polynomial space Turing machine.


Turing Machine Consistency Check Reverse Engineering Description Logic Class Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \({\cal E\mathit{}{\cal L}}\) envelope. In: Proc. of IJCAI, pp. 364–369 (2005)Google Scholar
  3. 3.
    Balaban, M., Maraee, A.: Finite satisfiability of UML class diagrams with constrained class hierarchy. ACM Trans. Softw. Eng. Methodol. 22(3) (2013)Google Scholar
  4. 4.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)CrossRefGoogle Scholar
  5. 5.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)Google Scholar
  6. 6.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)CrossRefGoogle Scholar
  7. 7.
    Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a family of logical knowledge representation and query languages for new applications. In: Proc. of LICS, pp. 228–242 (2010)Google Scholar
  8. 8.
    Calì, A., Gottlob, G., Orsi, G., Pieris, A.: Querying UML class diagrams. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 1–25. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)CrossRefGoogle Scholar
  10. 10.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaneiwa, K., Satoh, K.: On the complexities of consistency checking for restricted UML class diagrams. Theor. Comput. Sci. 411(2), 301–323 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Krötzsch, M., Rudolph, S., Hitzler, P.: Complexities of horn description logics. ACM Trans. Comput. Log. 14(1), 2 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Müller, H.A., Jahnke, J.H., Smith, D.B., Storey, M., Tilley, S.R., Wong, K.: Reverse engineering: a roadmap. In: Proc. of ICSE, pp. 47–60 (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Institute of Information SystemsVienna University of TechnologyViennaAustria

Personalised recommendations