Existential Rules and Bayesian Networks for Probabilistic Ontological Data Exchange

  • Thomas Lukasiewicz
  • Maria Vanina Martinez
  • Livia PredoiuEmail author
  • Gerardo I. Simari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9202)


We investigate the problem of exchanging probabilistic data between ontology-based probabilistic databases. The probabilities of the probabilistic source databases are compactly and flexibly encoded via Bayesian networks, which are closely related to the management of provenance. For the ontologies and the ontology mappings, we consider existential rules from the Datalog+/– family. We analyze the computational complexity of the problem of deciding whether there exists a probabilistic (universal) solution for a given probabilistic source database relative to a (probabilistic) ontological data exchange problem. We provide a host of complexity results for this problem for different classes of existential rules. We also analyze the complexity of answering UCQs (unions of conjunctive queries) in this framework.


Bayesian Network Description Logic Conjunctive Query Source Database Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V.: Exchanging OWL2 QL knowledge bases. In: Proc. IJCAI, pp. 703–710 (2013)Google Scholar
  2. 2.
    Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V., Sherkhonov, E.: Exchanging description logic knowledge bases. In: Proc. KR, pp. 563–567 (2012)Google Scholar
  3. 3.
    Arenas, M., Pérez, J., Reutter, J.L.: Data exchange beyond complete data. J. ACM 60(4), 28:1–28:59 (2013)CrossRefGoogle Scholar
  4. 4.
    Baader, F.: Least common subsumers and most specific concepts in a description logic with existential restrictions and terminological cycles. In: Proc. IJCAI, pp. 364–369 (2003)Google Scholar
  5. 5.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal EL\) envelope. In: Proc. IJCAI, pp. 364–369 (2005)Google Scholar
  6. 6.
    Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)zbMATHGoogle Scholar
  7. 7.
    Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a family of logical knowledge representation and query languages for new applications. In: Proc. LICS, pp. 228–242 (2010)Google Scholar
  8. 8.
    Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query answering problem. Artif. Intell. 193, 87–128 (2012)CrossRefzbMATHGoogle Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. Autom. Reasoning 39(3), 385–429 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks. Artif. Intell. 42(2–3) (1990)Google Scholar
  11. 11.
    Fagin, R., Kimelfeld, B., Kolaitis, P.G.: Probabilistic data exchange. J. ACM 58(4), 15:1–15:55 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fuhr, N., Rölleke, T.: A probabilistic relational algebra for the integration of information retrieval and database systems. ACM Trans. Inf. Sys. 15(1), 32–66 (1997)CrossRefGoogle Scholar
  14. 14.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proc. PODS, pp. 31–40 (2007)Google Scholar
  15. 15.
    Imielinski, T.: Witold Lipski, J.: Incomplete information in relational databases. J. ACM 31(4), 761–791 (1984)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. A, chap. 2, pp. 67–161. MIT Press (1990)Google Scholar
  17. 17.
    Krisnadhi, A., Lutz, C.: Data complexity in the \(\cal EL\) family of description logics. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 333–347. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  18. 18.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)Google Scholar
  19. 19.
    Lukasiewicz, T., Martinez, M.V., Pieris, A., Simari, G.I.: From classical to consistent query answering under existential rules. In: Proc. AAAI, pp. 1546–1552 (2015)Google Scholar
  20. 20.
    Meliou, A., Gatterbauer, W., Suciu, D.: Bringing provenance to its full potential using causal reasoning. In: Proc. TAPP (2011)Google Scholar
  21. 21.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1994)Google Scholar
  22. 22.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Sem. 10, 133–173 (2008)Google Scholar
  23. 23.
    Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82, 273–302 (1996)CrossRefGoogle Scholar
  24. 24.
    Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. M & C (2011)Google Scholar
  25. 25.
    Vardi, M.Y.: The complexity of relational query languages (extended abstract). In: Proc. STOC, pp. 137–146 (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
  • Maria Vanina Martinez
    • 2
  • Livia Predoiu
    • 1
    Email author
  • Gerardo I. Simari
    • 2
  1. 1.Department of Computer ScienceUniversity of OxfordOxfordUK
  2. 2.Department of Computer Science and EngineeringUniversidad Nacional Del Sur and CONICETBahía BlancaArgentina

Personalised recommendations