Advertisement

Ontology-Based Multidimensional Contexts with Applications to Quality Data Specification and Extraction

  • Mostafa MilaniEmail author
  • Leopoldo BertossiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9202)

Abstract

Data quality assessment and data cleaning are context dependent activities. Starting from this observation, in previous work a context model for the assessment of the quality of a database was proposed. A context takes the form of a possibly virtual database or a data integration system into which the database under assessment is mapped, for additional analysis, processing, and quality data extraction. In this work, we extend contexts with dimensions, and by doing so, multidimensional data quality assessment becomes possible. At the core of multidimensional contexts we find ontologies written as Datalog\(^\pm \) programs with provably good properties in terms of query answering. We use this language to represent dimension hierarchies, dimensional constraints, dimensional rules, and specifying quality data. Query answering relies on and triggers dimensional navigation, and becomes an important tool for the extraction of quality data.

Keywords

Categorical Attribute Categorical Relation Conjunctive Query Query Answering Query Answering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Techniques. Springer (2006)Google Scholar
  2. 2.
    Bertossi, Leopoldo, Rizzolo, Flavio, Jiang, Lei: Data quality is context dependent. In: Löser, Alexander (ed.) BIRTE 2010. LNBIP, vol. 84, pp. 52–67. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan & Claypool (2011)Google Scholar
  4. 4.
    Bolchini, C., Quintarelli, E., Tanca, L.: CARVE: Context-Aware Automatic View Definition over Relational Databases. Information Systems 38, 45–67 (2013)CrossRefGoogle Scholar
  5. 5.
    Cali, A., Lembo, D., Rosati, R.: On the decidability and complexity of query answering over inconsistent and incomplete databases. In: Proc. PODS, pp. 260–271 (2003)Google Scholar
  6. 6.
    Cali, A., Gottlob, G., Lukasiewicz, T.: Datalog\(^\pm \): a unified approach to ontologies and integrity constraints. In: Proc. ICDT, pp. 14–30 (2009)Google Scholar
  7. 7.
    Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog\(^\pm \): a family of logical knowledge representation and query languages for new applications. In: Proc. LICS, pp. 228–242 (2010)Google Scholar
  8. 8.
    Cali, A., Gottlob, G., Pieris, A.: Query answering under non-guarded rules in datalog+/-. In: Proc. RR, pp. 1–17 (2010)Google Scholar
  9. 9.
    Cali, A., Gottlob, G., Pieris, A.: Ontological Query Answering under Expressive Entity-Relationship Schemata. Information Systems 37(4), 320–335 (2012)CrossRefGoogle Scholar
  10. 10.
    Cali, A., Gottlob, G., Pieris, A.: Towards More Expressive Ontology Languages: The Query Answering Problem. Artificial Intelligence 193, 87–128 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cali, A., Gottlob, G., Lukasiewicz, T.: A General Datalog-Based Framework for Tractable Query Answering over Ontologies. Journal of Web Semantics 14, 57–83 (2012)CrossRefGoogle Scholar
  12. 12.
    Cali, A., Console, M., Frosini, R.: On separability of ontological constraints. In: Proc. AMW, pp. 48–61 (2012)Google Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO System for Ontology-Based Data Access. Semantic Web 2(1), 43–53 (2011)Google Scholar
  14. 14.
    Franconi, E., Sattler, U.: A data warehouse conceptual data model for multidimensional aggregation. In: Proc. DMDW, CEUR Proceedings, vol. 19 (1999)Google Scholar
  15. 15.
    Gottlob, G., Orsi, G., Pieris, A.: Query Rewriting and Optimization for Ontological Databases. ACM Trans. Database Syst. 39(3), 25 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data Exchange: Semantics and Query Answering. Theoretical Computer Science 336, 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-Founded semantics for extended datalog and ontological reasoning. In: Proc. PODS, pp. 225–236 (2013)Google Scholar
  18. 18.
    Hurtado, C., Mendelzon, A.: OLAP dimension constraints. In: Proc. PODS, pp. 169–179 (2002)Google Scholar
  19. 19.
    Imielinski, T., Lipski, W.: Incomplete Information in Relational Databases. Journal of the ACM 31(4), 761–791 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jiang, L., Borgida, A., Mylopoulos, J.: Towards a compositional semantic account of data quality attributes. In: Proc. ER, pp. 55–68 (2008)Google Scholar
  21. 21.
    Maleki, A., Bertossi, L., Rizzolo, F.: Multidimensional contexts for data quality assessment. In: Proc. AMW, 2012, CEUR Proceedings, vol. 866, pp. 196–209Google Scholar
  22. 22.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proc. PODS, pp. 233–246 (2002)Google Scholar
  23. 23.
    Martinenghi, D., Torlone, R.: Querying context-aware databases. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) FQAS 2009. LNCS, vol. 5822, pp. 76–87. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  24. 24.
    Martinenghi, D., Torlone, R.: Taxonomy-Based Relaxation of Query Answering in Relational Databases. The VLDB Journal 23(5), 747–769 (2014)CrossRefGoogle Scholar
  25. 25.
    Milani, M., Bertossi, L., Ariyan, S.: Extending contexts with ontologies for multidimensional data quality assessment. In: Proc. ICDEW (DESWeb), pp. 242–247 (2014)Google Scholar
  26. 26.
    Milani, M., Bertossi, L.: Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog\(\pm \) (2015). Submitted, under reviewGoogle Scholar
  27. 27.
    Milani, M., Bertossi, L.: Ontology-Based Multidimensional Contexts with Applications to Quality Data Specification and Extraction. Extended version of this paper. http://people.scs.carleton.ca/~bertossi/papers/obmcExt.pdf
  28. 28.
    Reiter, R.: Towards a logical reconstruction of relational database theory. In: Brodie, M.L., Mylopoulos, J., Schmidt, J.W. (eds.) On Conceptual Modelling, pp. 191–233. Springer (1984)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations