Advertisement

Deterministic Ordered Restarting Automata that Compute Functions

  • Friedrich OttoEmail author
  • Kent Kwee
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

We present three methods for using deterministic ordered restarting automata to compute relations and functions. In the most general setting we obtain succinct representations for all rational relations, and in the most restricted setting we derive a succinct description for all rational functions that map the empty word to itself. In addition, we study the deterministic ordered restarting transducer that characterizes a proper superclass of the rational functions.

Keywords

Ordered restarting automaton Rational function Descriptional complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)CrossRefGoogle Scholar
  2. 2.
    Choffrut, C., Culik II, K.: Properties of finite and pushdown transducers. SIAM J. Comput. 12, 300–315 (1983)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Elgot, C.C., Mezei, G.: On relations defined by generalized finite automata. IBM Journal of Research and Development 9, 47–65 (1965)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hundeshagen, N.: Relations and Transductions Realized by RestartingAutomata. PhD thesis, Fachbereich Elektrotechnik/Informatik, Universität Kassel (2013)Google Scholar
  5. 5.
    Hundeshagen, N., Otto, F.: Characterizing the rational functions by restarting transducers. In: Dediu, A.-H., Martín-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 325–336. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Kwee, K., Otto, F.: On some decision problems for stateless deterministic ordered restarting automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 165–176. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  7. 7.
    Mráz, F., Otto, F.: Ordered restarting automata for picture languages. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 431–442. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. 8.
    Otto, F.: On the descriptional complexity of deterministic ordered restarting automata. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 318–329. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Otto, F., Wendlandt, M., Kwee, K.: Reversible ordered restarting automata. In: Krevine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 60–75. Springer, Heidelberg (2015)Google Scholar
  10. 10.
    Průša, D.: Weight-reducing Hennie machines and their descriptional complexity. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 553–564. Springer, Heidelberg (2014) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Fachbereich Elektrotechnik/InformatikUniversität KasselKasselGermany

Personalised recommendations