State Complexity of Neighbourhoods and Approximate Pattern Matching

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

The neighbourhood of a language L with respect to an additive distance consists of all strings that have distance at most the given radius from some string of L. We show that the worst case (deterministic) state complexity of a radius r neighbourhood of a language recognized by an n state nondeterministic finite automaton A is \((r+2)^n\). The lower bound construction uses an alphabet of size linear in n. We show that the worst case state complexity of the set of strings that contain a substring within distance r from a string recognized by A is \((r+2)^{n-2} + 1\).

Keywords

Regular languages State complexity Lower bounds Additive distance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordihn, H., Holzer, M., Kutrib, M.: Determination of finite automata accepting subregular languages. Theoretical Computer Science 410, 3209–3249 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communications of ACM 20, 762–772 (1977)CrossRefGoogle Scholar
  3. 3.
    Brzozowski, J., Jirásková, G., Li, B.: Quotient complexity of ideal languages. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 208–221. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  4. 4.
    Calude, C.S., Salomaa, K., Yu, S.: Additive Distances and Quasi-Distances Between Words. Journal of Universal Computer Science 8(2), 141–152 (2002)MathSciNetGoogle Scholar
  5. 5.
    Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer-Verlag, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    El-Mabrouk, N.: On the size of minimal automata for approximate string matching. Technical report, Institut Gaspard Monge, Université de Marne la Vallée, Paris (1997)Google Scholar
  7. 7.
    Han, Y.-S., Ko, S.-K., Salomaa, K.: The edit distance between a regular language and a context-free language. International Journal of Foundations of Computer Science 24, 1067–1082 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kari, L., Konstantinidis, S.: Descriptional complexity of error/edit systems. Journal of Automata, Languages, and Combinatorics 9, 293–309 (2004)MathSciNetGoogle Scholar
  9. 9.
    Kari, L., Konstantinidis, S., Kopecki, S., Yang, M.: An efficient algorithm for computing the edit distance of a regular language via input-altering transducers. CoRR abs/1406.1041 (2014)Google Scholar
  10. 10.
    Konstantinidis, S.: Transducers and the properties of error detection, error-correction, and finite-delay decodability. Journal of Universal Computer Science 8, 278–291 (2002)MathSciNetGoogle Scholar
  11. 11.
    Konstantinidis, S.: Computing the edit distance of a regular language. Information and Computation 205, 1307–1316 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Konstantinidis, S., Silva, P.: Maximal error-detecting capabilities of formal languages. J. Automata, Languages and Combinatorics 13, 55–71 (2008)MathSciNetGoogle Scholar
  13. 13.
    Konstantinidis, S., Silva, P.: Computing maximal error-detecting capabilities and distances of regular languages. Fundamenta Informaticae 101, 257–270 (2010)MathSciNetGoogle Scholar
  14. 14.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  15. 15.
    Ng, T., Rappaport, D., Salomaa, K.: Quasi-distances and weighted finite automata. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015. LNCS, vol. 9118, pp. 209–219. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  16. 16.
    Pighizzini, G.: How hard is computing the edit distance? Information and Computation 165, 1–13 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Povarov, G.: Descriptive complexity of the hamming neighborhood of a regular language. In: Language and Automata Theory and Applications, pp. 509–520 (2007)Google Scholar
  18. 18.
    Salomaa, K., Schofield, P.: State Complexity of Additive Weighted Finite Automata. International Journal of Foundations of Computer Science 18(06), 1407–1416 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shallit, J.: A Second Course in Formal Languages and Automata Theory. Cambridge University Press (2009)Google Scholar
  20. 20.
    Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (Eds.) Handbook of Formal Languages, vol. I, pp. 41–110. Springer (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of ComputingQueen’s UniversityKingstonCanada

Personalised recommendations