Grammar-Based Tree Compression

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

This paper gives a survey on recent progress in grammar-based compression for trees. Also algorithms that directly work on grammar-compressed trees will be surveyed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T.: A bisection algorithm for grammar-based compression of ordered trees. Information Processing Letters 110(18–19), 815–820 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 160–171. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Bousquet-Mélou, M., Lohrey, M., Maneth, S., Noeth, E.: XML compression via DAGs. Theory of Computing Systems (2014). doi:10.1007/s00224-014-9544-x Google Scholar
  4. 4.
    Brent, R.P.: The parallel evaluation of general arithmetic expressions. Journal of the Association for Computing Machinery 21(2), 201–206 (1974)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In: Proceedings of VLDB 2003, pp. 141–152. Morgan Kaufmann (2003)Google Scholar
  6. 6.
    Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML document trees. Information Systems 33(4–5), 456–474 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Carles Creus, A.G., Godoy, G.: One-context unification with STG-compressed terms is in NP. In: Proceedings of RTA 2012, vol. 15 of LIPIcs, pp. 149–164. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  8. 8.
    Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Transactions on Information Theory 51(7), 2554–2576 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding, C., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://tata.gforge.inria.fr/
  10. 10.
    Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpression problem. Journal of the Association for Computing Machinery 27(4), 758–771 (1980)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subexpression problem. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–234. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  12. 12.
    Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended abstract). In: Proceedings of LICS 2003, pp. 188–197. IEEE Computer Society Press (2003)Google Scholar
  13. 13.
    Gascón, A., Godoy, G., Schmidt-Schauß, M.: Unification and matching on compressed terms. ACM Transactions on Computational Logic 12(4), 26 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimilarity of normed context-free processes. Theoretical Computer Science 158(1&2), 143–159 (1996)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hucke, D., Lohrey, M., Noeth, E.: Constructing small tree grammars and small circuits for formulas. In: Proceedings of FSTTCS 2014, vol. 29 of LIPIcs, pp. 457–468. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)Google Scholar
  16. 16.
    Jeż, A.: Approximation of grammar-based compression via recompression. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammars. In: Proceedings of STACS 2014, vol. 25 of LIPIcs, pp. 445–457. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)Google Scholar
  18. 18.
    Kieffer, J.C., Yang, E.H.: Grammar-based codes: A new class of universal lossless source codes. IEEE Transactions on Information Theory 46(3), 737–754 (2000)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kobayashi, N., Matsuda, K., Shinohara, A.: Functional programs as compressed data. In: Proceedings of PEPM 2012, pp. 121–130. ACM Press (2012)Google Scholar
  20. 20.
    Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Proceedings of DCC 1999, pp. 296–305. IEEE Computer Society Press (1999)Google Scholar
  21. 21.
    Levy, J., Schmidt-Schauß, M., Villaret, M.: The complexity of monadic second-order unification. SIAM Journal on Computing 38(3), 1113–1140 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lindell, S.: A logspace algorithm for tree canonization (extended abstract). In: Proceedings of STOC 1992, pp. 400–404. ACM Press (1992)Google Scholar
  23. 23.
    Lohrey, M.: On the parallel complexity of tree automata. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 201–215. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  24. 24.
    Lohrey, M.: Algorithmics on SLP-compressed strings: A survey. Groups Complexity Cryptology 4(2), 241–299 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lohrey, M., Maneth, S.: The complexity of tree automata and XPath on grammar-compressed trees. Theoretical Computer Science 363(2), 196–210 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using RePair. Information Systems 38(8), 1150–1167 (2013)CrossRefGoogle Scholar
  27. 27.
    Lohrey, M., Maneth, S., Peternek, F.: Compressed tree canonization.Technical report, arXiv.org (2015). http://arxiv.org/abs/1502.04625. An extended abstract will appear in Proceedings of ICALP 2015
  28. 28.
    Lohrey, M., Maneth, S., Schmidt-Schauß, M.: Parameter reduction and automata evaluation for grammar-compressed trees. Journal of Computer and System Sciences 78(5), 1651–1669 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Lohrey, M., Mathissen, C.: Isomorphism of regular trees and words. Information and Computation 224, 71–105 (2013)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: Proceedings of SODA 1994, pp. 213–222. ACM/SIAM (1994)Google Scholar
  31. 31.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  32. 32.
    Rytter, W.: Application of Lempel-Ziv factorization to the approximation of grammar-based compression. Theoretical Computer Science 302(1–3), 211–222 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based compression. Journal of Discrete Algorithms 3(2–4), 416–430 (2005)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Schmidt-Schauß, M.: Polynomial equality testing for terms with shared substructures. Technical Report Report 21, Institut für Informatik, J. W. Goethe-Universität Frankfurt am Main (2005)Google Scholar
  35. 35.
    Schmidt-Schauß, M.: Matching of compressed patterns with character-variables. In: Proceedings of RTA 2012, vol. 15 of LIPIcs, pp. 272–287. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Google Scholar
  36. 36.
    Schmidt-Schauß, M.: Linear compressed pattern matching for polynomial rewriting (extended abstract). In: Proceedings of TERMGRAPH 2013, vol. 110 of EPTCS, pp. 29–40 (2013)Google Scholar
  37. 37.
    Schmidt-Schauss, M., Sabel, D., Anis, A.: Congruence closure of compressed terms in polynomial time. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 227–242. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  38. 38.
    Zhang, J., Yang, E.-H., Kieffer, J.C.: A universal grammar-based code for lossless compression of binary trees. IEEE Transactions on Information Theory 60(3), 1373–1386 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Universität SiegenSiegenGermany

Personalised recommendations