A Connected 3-State Reversible Mealy Automaton Cannot Generate an Infinite Burnside Group

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

The class of automaton groups is a rich source of the simplest examples of infinite Burnside groups. However, no such examples have been constructed in some classes, as groups generated by non reversible automata. It was recently shown that 2-state reversible Mealy automata cannot generate infinite Burnside groups. Here we extend this result to connected 3-state reversible Mealy automata, using new original techniques. The results rely on a fine analysis of associated orbit trees and a new characterization of the existence of elements of infinite order.

Keywords

Burnside groups Reversible mealy automata Automaton groups 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness problem for automaton (semi)groups. Int. J. Algebr. Comput. 22(6) (2012)Google Scholar
  2. 2.
    Alešin, S.V.: Finite automata and the Burnside problem for periodic groups. Mat. Zametki 11, 319–328 (1972)MathSciNetGoogle Scholar
  3. 3.
    Bartholdi, L.: FR functionally recursive groups, self-similar groups, GAP package for computation in self-similar groups and semigroups, V. 2.2.1 (2015)Google Scholar
  4. 4.
    Bartholdi, L., Šuniḱ, Z.: On the word and period growth of some groups of tree automorphisms. Comm. Algebra 29–11, 4923–4964 (2001)CrossRefGoogle Scholar
  5. 5.
    Belk, J., Bleak, C.: Some undecidability results for asynchronous transducers and the Brin-Thompson group \(2{V}\). ArXiv:1405.0982
  6. 6.
    Burnside, W.: On an unsettled question in the theory of discontinuous groups. Quart. J. Math. 33, 230–238 (1902)Google Scholar
  7. 7.
    D’Angeli, D., Rodaro, E.: Freeness of automata groups vs boundary dynamics. ArXiv:1410.6097v2
  8. 8.
    D’Angeli, D., Rodaro, E.: A geometric approach to (semi)-groups defined by automata via dual transducers. Geometriae Dedicata 174(1), 375–400 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    The GAP Group: GAP Groups, Algorithms, and Programming (2015)Google Scholar
  10. 10.
    Gawron, P.W., Nekrashevych, V.V., Sushchansky, V.I.: Conjugation in tree automorphism groups. Internat. J. Algebr. Comput. 11–5, 529–547 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gillibert, P.: The finiteness problem for automaton semigroups is undecidable. Internat. J. Algebr. Comput. 24–1, 1–9 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gluškov, V.M.: Abstract theory of automata. Uspehi Mat. Nauk 16(5), 3–62 (1961)MathSciNetGoogle Scholar
  13. 13.
    Godin, T., Klimann, I., Picantin, M.: On Torsion-Free Semigroups Generated by Invertible Reversible Mealy Automata. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 328–339. Springer, Heidelberg (2015) Google Scholar
  14. 14.
    Golod, E.S., Shafarevich, I.: On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28, 261–272 (1964)MathSciNetGoogle Scholar
  15. 15.
    Grigorchuk, R.: On Burnside’s problem on periodic groups. Funktsional. Anal. i Prilozhen 14(1), 53–54 (1980)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Grigorchuk, R.: Degrees of growth of finitely generated groups and the theory of invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48(5), 939–985 (1984)MathSciNetGoogle Scholar
  17. 17.
    Grigorchuk, R., Savchuk, D.: Ergodic decomposition of group actions on rooted trees. In: Proc. of Steklov Inst. of Math. (to appear, 2015)Google Scholar
  18. 18.
    Gupta, N., Sidki, S.: On the Burnside problem for periodic groups. Math. Z. 182–3, 385–388 (1983)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klimann, I.: Automaton semigroups: The two-state case. Theor. Comput. Syst., 1–17 (special issue STACS 2013) (2014)Google Scholar
  20. 20.
    Klimann, I., Picantin, M., Savchuk, D.: Orbit automata as a new tool to attack the order problem in automaton groups. ArXiv:1411.0158v2
  21. 21.
    Muntyan, Y., Savchuk, D.: automgrp automata groups, GAP package for computation in self-similar groups and semigroups, V. 1.2.4 (2014)Google Scholar
  22. 22.
    Nekrashevych, V.: Self-similar groups, Mathematical Surveys and Monographs, vol. 117. American Mathematical Society, Providence (2005)Google Scholar
  23. 23.
    Savchuk, D., Vorobets, Y.: Automata generating free products of groups of order 2. J. Algebra 336–1, 53–66 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sushchansky, V.I.: Periodic permutation \(p\)-groups and the unrestricted Burnside problem. DAN SSSR. 247(3), 557–562 (1979). (in Russian)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ines Klimann
    • 1
  • Matthieu Picantin
    • 1
  • Dmytro Savchuk
    • 2
  1. 1.University Paris Diderot, Sorbonne Paris Cité, LIAFA, UMR 7089 CNRSParisFrance
  2. 2.Department of Mathematics and StatisticsUniversity of South FloridaTampaUSA

Personalised recommendations