Unary Probabilistic and Quantum Automata on Promise Problems

  • Aida GainutdinovaEmail author
  • Abuzer Yakaryılmaz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)


We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.


Markov Chain Unary Probabilistic State Transition Matrix Deterministic Finite Automaton Unary Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quantum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Ablayev, F., Gainutdinova, A.: On the lower bounds for one-way quantum automata. In: Nielsen, M., Rovan, B. (eds.) MFCS 2000. LNCS, vol. 1893, pp. 132–140. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  3. 3.
    Ablayev, F., Gainutdinova, A.: Complexity of quantum uniform and nonuniform automata. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 78–87. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  4. 4.
    Ablayev, F.M., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the computational power of probabilistic and quantum branching program. Information Computation 203(2), 145–162 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: FOCS 1998, pp. 332–341 (1998)Google Scholar
  6. 6.
    Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise problems. Information Processing Letters 112(7), 289–291 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Apostol, T.M.: Introduction to Analytic Number Theory. Springer (1976)Google Scholar
  8. 8.
    Bianchi, M.P., Mereghetti, C., Palano, B.: Complexity of promise problems on classical and quantum automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 161–175. Springer, Heidelberg (2014) Google Scholar
  9. 9.
    Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs (extended abstract). In: FOCS 1989, pp. 462–467 (1989)Google Scholar
  10. 10.
    Gainutdinova, A., Yakaryilmaz, A.: Unary probabilistic and quantum automata on promise problems. Technical Report, arXiv (2015)Google Scholar
  11. 11.
    Geffert, V., Yakaryılmaz, A.: Classical automata on promise problems. In: Jürgensen, H., Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 126–137. Springer, Heidelberg (2014) Google Scholar
  12. 12.
    Goldreich, O.: On promise problems: a survey. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 254–290. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  13. 13.
    Gruska, J., Qiu, D., Zheng, S.: Generalizations of the distributed Deutsch-Jozsa promise problem. Technical report, arXiv (2014). arXiv:1402.7254
  14. 14.
    Gruska, J., Qiu, D., Zheng, S.: Potential of quantum finite automata with exact acceptance. Technical Report arXiv:1404.1689 (2014)
  15. 15.
    Hirvensalo, M.: Quantum automata with open time evolution. International Journal of Natural Computing 1(1), 70–85 (2010)CrossRefGoogle Scholar
  16. 16.
    Kemeny, J.G., Snell, J.L.: Finite Markov Chains. Van Nostrand, Princeton (1960) Google Scholar
  17. 17.
    Klauck, H.: On quantum and probabilistic communication: las vegas and one-way protocols. In: STOC 2000, pp. 644–651 (2000)Google Scholar
  18. 18.
    Mereghetti, C., Palano, B., Pighizzini, G.: Note on the succinctness of deterministic, nondeterministic, probabilistic and quantum finite automata. Theoretical Informatics and Applications 35(5), 477–490 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theoretical Computer Science 237(1–2), 275–306 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Murakami, Y., Nakanishi, M., Yamashita, S., Watanabe, K.: Quantum versus classical pushdown automata in exact computation. IPSJ Digital Courier 1, 426–435 (2005)CrossRefGoogle Scholar
  21. 21.
    Nakanishi, M.: Quantum pushdown automata with a garbage tape. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015-Testing. LNCS, vol. 8939, pp. 352–363. Springer, Heidelberg (2015) Google Scholar
  22. 22.
    Nakanishi, M., Yakaryılmaz, A.: Classical and quantum counter automata on promise problems (2014). (arXiv:1412.6761) (Accepted to CIAA2015)Google Scholar
  23. 23.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  24. 24.
    Rashid, J., Yakaryılmaz, A.: Implications of quantum automata for contextuality. In: Holzer, M., Kutrib, M. (eds.) CIAA 2014. LNCS, vol. 8587, pp. 318–331. Springer, Heidelberg (2014) Google Scholar
  25. 25.
    Salomaaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Texts and monographs in computer science. Springer-Verlag (1978)Google Scholar
  26. 26.
    Cem Say, A.C., Yakaryılmaz, A.: Quantum finite automata: a modern introduction. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Gruska Festschrift. LNCS, vol. 8808, pp. 208–222. Springer, Heidelberg (2014) Google Scholar
  27. 27.
    Watrous, J.: Encyclopedia of Complexity and System Science. In: Quantum computational complexity (chapter). Springer (2009). arXiv:0804.3401
  28. 28.
    Yakaryılmaz, A., Cem Say, A.C.: Languages recognized by nondeterministic quantum finite automata. Quantum Information and Computation 10(9&10), 747–770 (2010)MathSciNetGoogle Scholar
  29. 29.
    Yakaryılmaz, A., Cem Say, A.C.: Unbounded-error quantum computation with small space bounds. Information and Computation 279(6), 873–892 (2011)CrossRefGoogle Scholar
  30. 30.
    Zheng, S., Gruska, J., Qiu, D.: On the state complexity of semi-quantum finite automata. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 601–612. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  31. 31.
    Zheng, S., Qiu, D., Gruska, J., Li, L., Mateus, P.: State succinctness of two-way finite automata with quantum and classical states. Theoretical Computer Science 499, 98–112 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Kazan Federal UniversityKazanRussia
  2. 2.National Laboratory for Scientific ComputingPetrópolisBrazil

Personalised recommendations