Advertisement

*-Continuous Kleene \(\omega \)-Algebras

  • Zoltán Ésik
  • Uli FahrenbergEmail author
  • Axel Legay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

We define and study basic properties of \(^*\)-continuous Kleene \(\omega \)-algebras that involve a \(^*\)-continuous Kleene algebra with a \(^*\)-continuous action on a semimodule and an infinite product operation that is also \(^*\)-continuous. We show that \(^*\)-continuous Kleene \(\omega \)-algebras give rise to iteration semiring-semimodule pairs, and that for Büchi automata over \(^*\)-continuous Kleene \(\omega \)-algebras, one can compute the associated infinitary power series.

Keywords

Complete Lattice Regular Language Product Operation Continuous Homomorphism Path Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes. EATCS monographs on theoretical computer science. Springer (1993)Google Scholar
  2. 2.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)Google Scholar
  3. 3.
    Ésik, Z.: Iteration semirings. In: Ito, M., Toyama, M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 1–20. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  4. 4.
    Ésik, Z., Fahrenberg, U., Legay, A.: \(^*\)-continuous Kleene \(\omega \)-algebras. CoRR (2015). http://arxiv.org/abs/1501.01118
  5. 5.
    Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: Kleene algebras and semimodules for energy problems. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 102–117. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Ésik, Z., Kuich, W.: Rationally additive semirings. J. Univ. Comput. Sci. 8(2), 173–183 (2002)zbMATHGoogle Scholar
  7. 7.
    Ésik, Z., Kuich, W.: Inductive star-semirings. TCS 324(1), 3–33 (2004)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ésik, Z., Kuich, W.: A semiring-semimodule generalization of \(\omega \)-regular languages, Parts 1 and 2. J. Aut. Lang. Comb. 10, 203–264 (2005)zbMATHGoogle Scholar
  9. 9.
    Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. Semigroup Forum 75, 129–159 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ésik, Z., Kuich, W.: Finite automata. In: Handbook of Weighted Automata. Springer (2009)Google Scholar
  11. 11.
    Kozen, D.: On kleene algebras and closed semirings. In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 26–47. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  12. 12.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Krob, D.: Complete systems of B-rational identities. TCS 89(2), 207–343 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wike, T.: An eilenberg theorem for \(\infty \)-languages. In: Albert, J.L., Monien, B., Artalejo, M.R. (eds.) ICALP. LNCS, vol. 510, pp. 588–599. Springer, Heidelberg (1991) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of SzegedSzegedHungary
  2. 2.Irisa / Inria RennesRennesFrance

Personalised recommendations