Advertisement

Deciding Proper Conjugacy of Classes of One-Sided Finite-Type-Dyck Shifts

  • Marie-Pierre BéalEmail author
  • Pavel HellerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9168)

Abstract

One-sided sofic-Dyck shifts are sets of infinite sequences of symbols avoiding a visibly pushdown language of finite words. One-sided finite-type-Dyck shifts constitute a subclass of these sets of sequences. A (one-sided) finite-type-Dyck shift is defined as the set of infinite sequences avoiding both some finite set of words and some finite set of matching patterns. We prove that proper conjugacy is decidable for a large class of one-sided finite-type-Dyck shifts, the matched-return extensible shifts. This class contains many known non-sofic one-sided shifts like Dyck shifts and Motzkin shifts. It contains also strictly all extensible one-sided shifts of finite type. Our result is thus an extension of the decidability of conjugacy between one-sided shifts of finite type obtained by Williams.

Keywords

Topological Entropy Regular Language Matched Edge Dyck Path Shift Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pp. 202–211 (electronic). ACM, New York (2004)Google Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Adding nesting structure to words. J. ACM 56(3) (2009)Google Scholar
  3. 3.
    Aubrun, N., Béal, M.-P.: Tree-shifts of finite type. Theoret. Comput. Sci. 459, 16–25 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Béal, M.-P., Berstel, J., Eilers, S., Perrin, D.: Symbolic dynamics. to appear in Handbook of Automata (2010)Google Scholar
  5. 5.
    Béal, M.-P., Blockelet, M., Dima, C.: Finite-type-Dyck shift spaces. CoRR (2013). http://arxiv.org/1311.4223
  6. 6.
    Béal, M.-P., Blockelet, M., Dima, C.: Sofic-Dyck shifts. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 63–74. Springer, Heidelberg (2014) Google Scholar
  7. 7.
    Béal, M.-P., Blockelet, M., Dima, C.: Sofic-Dyck shifts. CoRR (2014). http://arxiv.org/1305.7413
  8. 8.
    Fujiwara, M.: Conjugacy for one-sided sofic systems. In: Dynamical Systems and Singular Phenomena (Kyoto, 1986), World Sci. Adv. Ser. Dynam. Systems, vol. 2, pp. 189–202. World Sci. Publishing, Singapore (1987)Google Scholar
  9. 9.
    Inoue, K., Krieger, W.: Subshifts from sofic shifts and Dyck shifts, zeta functions and topological entropy. CoRR (2010). abs/1001.1839Google Scholar
  10. 10.
    Kitchens, B.P.: Symbolic Dynamics, One-sided, two-sided and countable state Markov shifts. Universitext. Springer, Berlin (1998) Google Scholar
  11. 11.
    Krieger, W.: On the uniqueness of the equilibrium state. Math. Systems Theory 8(2), 97–104 (1974)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krieger, W., Matsumoto, K.: Zeta functions and topological entropy of the Markov-Dyck shifts. Münster J. Math. 4, 171–183 (2011)MathSciNetGoogle Scholar
  13. 13.
    Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)CrossRefGoogle Scholar
  14. 14.
    Williams, R.F.: Classification of subshifts of finite type. In: Beck, A. (ed.) Recent Advances in Topological Dynamics. LNCS, vol. 318, pp. 281–285. Springer, Heidelberg (1973) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.LIGM UMR 8049Université Paris-EstMarne-la-Vallée Cedex 2France

Personalised recommendations